Smoothing Spline ANOVA Models

Smoothing Spline ANOVA Models
Author: Chong Gu
Publisher: Springer Science & Business Media
Total Pages: 301
Release: 2013-03-09
Genre: Mathematics
ISBN: 1475736835

Smoothing methods are an active area of research. In this book, the author presents a comprehensive treatment of penalty smoothing under a unified framework. Methods are developed for (i) regression with Gaussian and non-Gaussian responses as well as with censored life time data; (ii) density and conditional density estimation under a variety of sampling schemes; and (iii) hazard rate estimation with censored life time data and covariates. Extensive discussions are devoted to model construction, smoothing parameter selection, computation, and asymptotic convergence. Most of the computational and data analytical tools discussed in the book are implemented in R, an open-source clone of the popular S/S- PLUS language.

Smoothing Spline ANOVA Models

Smoothing Spline ANOVA Models
Author: Chong Gu
Publisher: Springer
Total Pages: 0
Release: 2015-06-25
Genre: Mathematics
ISBN: 9781489989840

Nonparametric function estimation with stochastic data, otherwise known as smoothing, has been studied by several generations of statisticians. Assisted by the ample computing power in today's servers, desktops, and laptops, smoothing methods have been finding their ways into everyday data analysis by practitioners. While scores of methods have proved successful for univariate smoothing, ones practical in multivariate settings number far less. Smoothing spline ANOVA models are a versatile family of smoothing methods derived through roughness penalties, that are suitable for both univariate and multivariate problems. In this book, the author presents a treatise on penalty smoothing under a unified framework. Methods are developed for (i) regression with Gaussian and non-Gaussian responses as well as with censored lifetime data; (ii) density and conditional density estimation under a variety of sampling schemes; and (iii) hazard rate estimation with censored life time data and covariates. The unifying themes are the general penalized likelihood method and the construction of multivariate models with built-in ANOVA decompositions. Extensive discussions are devoted to model construction, smoothing parameter selection, computation, and asymptotic convergence. Most of the computational and data analytical tools discussed in the book are implemented in R, an open-source platform for statistical computing and graphics. Suites of functions are embodied in the R package gss, and are illustrated throughout the book using simulated and real data examples. This monograph will be useful as a reference work for researchers in theoretical and applied statistics as well as for those in other related disciplines. It can also be used as a text for graduate level courses on the subject. Most of the materials are accessible to a second year graduate student with a good training in calculus and linear algebra and working knowledge in basic statistical inferences such as linear models and maximum likelihood estimates.

Smoothing Splines

Smoothing Splines
Author: Yuedong Wang
Publisher: CRC Press
Total Pages: 380
Release: 2011-06-22
Genre: Computers
ISBN: 1420077562

A general class of powerful and flexible modeling techniques, spline smoothing has attracted a great deal of research attention in recent years and has been widely used in many application areas, from medicine to economics. Smoothing Splines: Methods and Applications covers basic smoothing spline models, including polynomial, periodic, spherical, t

Generalized Additive Models

Generalized Additive Models
Author: Simon Wood
Publisher: CRC Press
Total Pages: 412
Release: 2006-02-27
Genre: Mathematics
ISBN: 1584884746

Now in widespread use, generalized additive models (GAMs) have evolved into a standard statistical methodology of considerable flexibility. While Hastie and Tibshirani's outstanding 1990 research monograph on GAMs is largely responsible for this, there has been a long-standing need for an accessible introductory treatment of the subject that also emphasizes recent penalized regression spline approaches to GAMs and the mixed model extensions of these models. Generalized Additive Models: An Introduction with R imparts a thorough understanding of the theory and practical applications of GAMs and related advanced models, enabling informed use of these very flexible tools. The author bases his approach on a framework of penalized regression splines, and builds a well-grounded foundation through motivating chapters on linear and generalized linear models. While firmly focused on the practical aspects of GAMs, discussions include fairly full explanations of the theory underlying the methods. Use of the freely available R software helps explain the theory and illustrates the practicalities of linear, generalized linear, and generalized additive models, as well as their mixed effect extensions. The treatment is rich with practical examples, and it includes an entire chapter on the analysis of real data sets using R and the author's add-on package mgcv. Each chapter includes exercises, for which complete solutions are provided in an appendix. Concise, comprehensive, and essentially self-contained, Generalized Additive Models: An Introduction with R prepares readers with the practical skills and the theoretical background needed to use and understand GAMs and to move on to other GAM-related methods and models, such as SS-ANOVA, P-splines, backfitting and Bayesian approaches to smoothing and additive modelling.

Modern Regression Techniques Using R

Modern Regression Techniques Using R
Author: Daniel B Wright
Publisher: SAGE
Total Pages: 217
Release: 2009-02-19
Genre: Mathematics
ISBN: 1446206025

Statistics is the language of modern empirical social and behavioural science and the varieties of regression form the basis of this language. Statistical and computing advances have led to new and exciting regressions that have become the necessary tools for any researcher in these fields. In a way that is refreshingly engaging and readable, Wright and London describe the most useful of these techniques and provide step-by-step instructions, using the freeware R, to analyze datasets that can be located on the books′ webpage: www.sagepub.co.uk/wrightandlondon. Techniques covered in this book include multilevel modeling, ANOVA and ANCOVA, path analysis, mediation and moderation, logistic regression (generalized linear models), generalized additive models, and robust methods. These are all tested out using a range of real research examples conducted by the authors in every chapter. Given the wide coverage of techniques, this book will be essential reading for any advanced undergraduate and graduate student (particularly in psychology) and for more experienced researchers wanting to learn how to apply some of the more recent statistical techniques to their datasets. The Authors are donating all royalties from the book to the American Partnership for Eosinophilic Disorders.

Topics in Splines and Applications

Topics in Splines and Applications
Author: Young Kinh-Nhue Truong
Publisher: BoD – Books on Demand
Total Pages: 162
Release: 2018-06-06
Genre: Computers
ISBN: 1789232503

Splines provide a significant tool for the design of computationally economical curves and surfaces for the construction of various objects like automobiles, ship hulls, airplane fuselages and wings, propeller blades, shoe insoles, bottles, etc. It also contributes in the description of geological, physical, statistical, and even medical phenomena. Spline methods have proven to be indispensable in a variety of modern industries, including computer vision, robotics, signal and image processing, visualization, textile, graphic designs, and even media. This book aims to provide a valuable source on splines and their applications. It focuses on collecting and disseminating information in various disciplines including computer-aided geometric design, computer graphics, data visualization, data fitting, power systems, clinical and epidemiologic studies, disease detection, regression curves, social media, and biological studies. The book is useful for researchers, scientists, practitioners, and many others who seek state-of-the-art techniques and applications using splines. It is also useful for undergraduate senior students as well as graduate students in the areas of computer science, engineering, health science, statistics, and mathematics. Each chapter also provides useful information on software developments and their extensions.

Spline Regression Models

Spline Regression Models
Author: Lawrence C. Marsh
Publisher: SAGE
Total Pages: 86
Release: 2001-09-14
Genre: Mathematics
ISBN: 9780761924203

Spline Regression Models shows how to use dummy variables to formulate and estimate spline regression models both in situations where the number and location of the spline knots are known in advance, and where estimation is required.

Generalized Additive Models

Generalized Additive Models
Author: Simon N. Wood
Publisher: CRC Press
Total Pages: 476
Release: 2017-05-18
Genre: Mathematics
ISBN: 1498728340

The first edition of this book has established itself as one of the leading references on generalized additive models (GAMs), and the only book on the topic to be introductory in nature with a wealth of practical examples and software implementation. It is self-contained, providing the necessary background in linear models, linear mixed models, and generalized linear models (GLMs), before presenting a balanced treatment of the theory and applications of GAMs and related models. The author bases his approach on a framework of penalized regression splines, and while firmly focused on the practical aspects of GAMs, discussions include fairly full explanations of the theory underlying the methods. Use of R software helps explain the theory and illustrates the practical application of the methodology. Each chapter contains an extensive set of exercises, with solutions in an appendix or in the book’s R data package gamair, to enable use as a course text or for self-study. Simon N. Wood is a professor of Statistical Science at the University of Bristol, UK, and author of the R package mgcv.

Modeling and Analysis of Longitudinal Data

Modeling and Analysis of Longitudinal Data
Author:
Publisher: Elsevier
Total Pages: 362
Release: 2024-02-20
Genre: Mathematics
ISBN: 0443136521

Longitudinal Data Analysis, Volume 50 in the Handbook of Statistics series covers how data consists of a series of repeated observations of the same subjects over an extended time frame and is thus useful for measuring change. Such studies and the data arise in a variety of fields, such as health sciences, genomic studies, experimental physics, sociology, sports and student enrollment in universities. For example, in health studies, intra-subject correlation of responses must be accounted for, covariates vary with time, and bias can arise if patients drop out of the study. - Provides the authority and expertise of leading contributors from an international board of authors - Presents the latest release in the Handbook of Statistics series - Updated release includes the latest information on Modeling and Analysis of Longitudinal Data

Past, Present, and Future of Statistical Science

Past, Present, and Future of Statistical Science
Author: Xihong Lin
Publisher: CRC Press
Total Pages: 648
Release: 2014-03-26
Genre: Mathematics
ISBN: 1482204983

Past, Present, and Future of Statistical Science was commissioned in 2013 by the Committee of Presidents of Statistical Societies (COPSS) to celebrate its 50th anniversary and the International Year of Statistics. COPSS consists of five charter member statistical societies in North America and is best known for sponsoring prestigious awards in stat