Singular Solutions of Nonlinear Elliptic and Parabolic Equations

Singular Solutions of Nonlinear Elliptic and Parabolic Equations
Author: Alexander A. Kovalevsky
Publisher: Walter de Gruyter GmbH & Co KG
Total Pages: 448
Release: 2016-03-21
Genre: Mathematics
ISBN: 3110332248

This monograph looks at several trends in the investigation of singular solutions of nonlinear elliptic and parabolic equations. It discusses results on the existence and properties of weak and entropy solutions for elliptic second-order equations and some classes of fourth-order equations with L1-data and questions on the removability of singularities of solutions to elliptic and parabolic second-order equations in divergence form. It looks at localized and nonlocalized singularly peaking boundary regimes for different classes of quasilinear parabolic second- and high-order equations in divergence form. The book will be useful for researchers and post-graduate students that specialize in the field of the theory of partial differential equations and nonlinear analysis. Contents: Foreword Part I: Nonlinear elliptic equations with L^1-data Nonlinear elliptic equations of the second order with L^1-data Nonlinear equations of the fourth order with strengthened coercivity and L^1-data Part II: Removability of singularities of the solutions of quasilinear elliptic and parabolic equations of the second order Removability of singularities of the solutions of quasilinear elliptic equations Removability of singularities of the solutions of quasilinear parabolic equations Quasilinear elliptic equations with coefficients from the Kato class Part III: Boundary regimes with peaking for quasilinear parabolic equations Energy methods for the investigation of localized regimes with peaking for parabolic second-order equations Method of functional inequalities in peaking regimes for parabolic equations of higher orders Nonlocalized regimes with singular peaking Appendix: Formulations and proofs of the auxiliary results Bibliography

Nonlinear Second Order Elliptic Equations Involving Measures

Nonlinear Second Order Elliptic Equations Involving Measures
Author: Moshe Marcus
Publisher: Walter de Gruyter
Total Pages: 264
Release: 2013-11-27
Genre: Mathematics
ISBN: 3110305313

In the last 40 years semi-linear elliptic equations became a central subject of study in the theory of nonlinear partial differential equations. On the one hand, the interest in this area is of a theoretical nature, due to its deep relations to other branches of mathematics, especially linear and nonlinear harmonic analysis, dynamical systems, differential geometry and probability. On the other hand, this study is of interest because of its applications. Equations of this type come up in various areas such as problems of physics and astrophysics, curvature problems in Riemannian geometry, logistic problems related for instance to population models and, most importantly, the study of branching processes and superdiffusions in the theory of probability. The aim of this book is to present a comprehensive study of boundary value problems for linear and semi-linear second order elliptic equations with measure data. We are particularly interested in semi-linear equations with absorption. The interactions between the diffusion operator and the absorption term give rise to a large class of nonlinear phenomena in the study of which singularities and boundary trace play a central role. This book is accessible to graduate students and researchers with a background in real analysis and partial differential equations.

Elliptic Boundary Value Problems of Second Order in Piecewise Smooth Domains

Elliptic Boundary Value Problems of Second Order in Piecewise Smooth Domains
Author: Michail Borsuk
Publisher: Elsevier
Total Pages: 538
Release: 2006-01-12
Genre: Mathematics
ISBN: 0080461735

The book contains a systematic treatment of the qualitative theory of elliptic boundary value problems for linear and quasilinear second order equations in non-smooth domains. The authors concentrate on the following fundamental results: sharp estimates for strong and weak solutions, solvability of the boundary value problems, regularity assertions for solutions near singular points.Key features:* New the Hardy – Friedrichs – Wirtinger type inequalities as well as new integral inequalities related to the Cauchy problem for a differential equation.* Precise exponents of the solution decreasing rate near boundary singular points and best possible conditions for this.* The question about the influence of the coefficients smoothness on the regularity of solutions.* New existence theorems for the Dirichlet problem for linear and quasilinear equations in domains with conical points.* The precise power modulus of continuity at singular boundary point for solutions of the Dirichlet, mixed and the Robin problems.* The behaviour of weak solutions near conical point for the Dirichlet problem for m – Laplacian.* The behaviour of weak solutions near a boundary edge for the Dirichlet and mixed problem for elliptic quasilinear equations with triple degeneration.* Precise exponents of the solution decreasing rate near boundary singular points and best possible conditions for this.* The question about the influence of the coefficients smoothness on the regularity of solutions.* New existence theorems for the Dirichlet problem for linear and quasilinear equations in domains with conical points.* The precise power modulus of continuity at singular boundary point for solutions of the Dirichlet, mixed and the Robin problems.* The behaviour of weak solutions near conical point for the Dirichlet problem for m - Laplacian.* The behaviour of weak solutions near a boundary edge for the Dirichlet and mixed problem for elliptic quasilinear equations with triple degeneration.

Handbook of Differential Equations: Stationary Partial Differential Equations

Handbook of Differential Equations: Stationary Partial Differential Equations
Author: Michel Chipot
Publisher: Elsevier
Total Pages: 618
Release: 2011-08-11
Genre: Mathematics
ISBN: 0080560598

This handbook is the sixth and last volume in the series devoted to stationary partial differential equations. The topics covered by this volume include in particular domain perturbations for boundary value problems, singular solutions of semilinear elliptic problems, positive solutions to elliptic equations on unbounded domains, symmetry of solutions, stationary compressible Navier-Stokes equation, Lotka-Volterra systems with cross-diffusion, and fixed point theory for elliptic boundary value problems.* Collection of self-contained, state-of-the-art surveys* Written by well-known experts in the field* Informs and updates on all the latest developments

Reaction Diffusion Systems

Reaction Diffusion Systems
Author: Gabriela Caristi
Publisher: CRC Press
Total Pages: 428
Release: 2020-10-07
Genre: Mathematics
ISBN: 1000117197

"Based on the proceedings of the International Conference on Reaction Diffusion Systems held recently at the University of Trieste, Italy. Presents new research papers and state-of-the-art surveys on the theory of elliptic, parabolic, and hyperbolic problems, and their related applications. Furnishes incisive contribution by over 40 mathematicians representing renowned institutions in North and South America, Europe, and the Middle East."

Isolated Singularities in Partial Differential Inequalities

Isolated Singularities in Partial Differential Inequalities
Author: Marius Ghergu
Publisher: Cambridge University Press
Total Pages: 552
Release: 2016-01-25
Genre: Mathematics
ISBN: 1316495574

In this monograph, the authors present some powerful methods for dealing with singularities in elliptic and parabolic partial differential inequalities. Here, the authors take the unique approach of investigating differential inequalities rather than equations, the reason being that the simplest way to study an equation is often to study a corresponding inequality; for example, using sub and superharmonic functions to study harmonic functions. Another unusual feature of the present book is that it is based on integral representation formulae and nonlinear potentials, which have not been widely investigated so far. This approach can also be used to tackle higher order differential equations. The book will appeal to graduate students interested in analysis, researchers in pure and applied mathematics, and engineers who work with partial differential equations. Readers will require only a basic knowledge of functional analysis, measure theory and Sobolev spaces.

Nonlinear Evolution Equations and Related Topics

Nonlinear Evolution Equations and Related Topics
Author: Wolfgang Arendt
Publisher: Springer Science & Business Media
Total Pages: 844
Release: 2004-08-20
Genre: Mathematics
ISBN: 9783764371074

Philippe Bénilan was a most original and charismatic mathematician who had a deep and decisive impact on the theory of Nonlinear Evolution Equations. Dedicated to him, Nonlinear Evolution Equations and Related Topics contains research papers written by highly distinguished mathematicians. They are all related to Philippe Benilan's work and reflect the present state of this most active field. The contributions cover a wide range of nonlinear and linear equations.

Stochastic Processes, Physics and Geometry: New Interplays. I

Stochastic Processes, Physics and Geometry: New Interplays. I
Author: Sergio Albeverio
Publisher: American Mathematical Soc.
Total Pages: 348
Release: 2000
Genre: Mathematics
ISBN: 9780821819593

This volume and "IStochastic Processes, Physics and Geometry: New Interplays II" present state-of-the-art research currently unfolding at the interface between mathematics and physics. Included are select articles from the international conference held in Leipzig (Germany) in honor of Sergio Albeverio's sixtieth birthday. The theme of the conference, "Infinite Dimensional (Stochastic) Analysis and Quantum Physics", was chosen to reflect Albeverio's wide-ranging scientific interests. The articles in these books reflect that broad range of interests and provide a detailed overview highlighting the deep interplay among stochastic processes, mathematical physics, and geometry. The contributions are written by internationally recognized experts in the fields of stochastic analysis, linear and nonlinear (deterministic and stochastic) PDEs, infinite dimensional analysis, functional analysis, commutative and noncommutative probability theory, integrable systems, quantum and statistical mechanics, geometric quantization, and neural networks. Also included are applications in biology and other areas. Most of the contributions are high-level research papers. However, there are also some overviews on topics of general interest. The articles selected for publication in these volumes were specifically chosen to introduce readers to advanced topics, to emphasize interdisciplinary connections, and to stress future research directions. Volume I contains contributions from invited speakers; Volume II contains additional contributed papers. Members of the Canadian Mathematical Society may order at the AMS member price.