Singular Partial Differential Equations
Download Singular Partial Differential Equations full books in PDF, epub, and Kindle. Read online free Singular Partial Differential Equations ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Abduhamid Dzhuraev |
Publisher | : CRC Press |
Total Pages | : 220 |
Release | : 1999-11-29 |
Genre | : Science |
ISBN | : 9781584881445 |
Singular Partial Differential Equations provides an analytical, constructive, and elementary approach to non-elementary problems. In the first monograph to consider such equations, the author investigates the solvability of partial differential equations and systems in a class of bounded functions with complex coefficients having singularities at the inner points or boundary of the domain. Using complex variable techniques, the author considers a variety of problems, including the Dirichlet, Neumann, and other problems for first order systems. He also explores applications to singular equations, degenerate, high-dimensional Beltrami systems in Cn,, and others. Singular Partial Differential Equations fills a gap in the literature on degenerate and singular partial differential equations and significantly contributes to the theory of boundary value problems for these equations and systems. It will undoubtedly stimulate further research in the field. Practical applications in analysis and physics make this important reading for researchers and students in physics and engineering, along with mathematicians.
Author | : Adelaida B. Vasil'eva |
Publisher | : SIAM |
Total Pages | : 231 |
Release | : 1995-01-01 |
Genre | : Mathematics |
ISBN | : 0898713331 |
This book is devoted solely to the boundary function method, which is one of the asymptotic methods.
Author | : Ferdinand Verhulst |
Publisher | : Springer Science & Business Media |
Total Pages | : 332 |
Release | : 2006-06-04 |
Genre | : Mathematics |
ISBN | : 0387283137 |
Contains well-chosen examples and exercises A student-friendly introduction that follows a workbook type approach
Author | : Walter A. Strauss |
Publisher | : John Wiley & Sons |
Total Pages | : 467 |
Release | : 2007-12-21 |
Genre | : Mathematics |
ISBN | : 0470054565 |
Our understanding of the fundamental processes of the natural world is based to a large extent on partial differential equations (PDEs). The second edition of Partial Differential Equations provides an introduction to the basic properties of PDEs and the ideas and techniques that have proven useful in analyzing them. It provides the student a broad perspective on the subject, illustrates the incredibly rich variety of phenomena encompassed by it, and imparts a working knowledge of the most important techniques of analysis of the solutions of the equations. In this book mathematical jargon is minimized. Our focus is on the three most classical PDEs: the wave, heat and Laplace equations. Advanced concepts are introduced frequently but with the least possible technicalities. The book is flexibly designed for juniors, seniors or beginning graduate students in science, engineering or mathematics.
Author | : Raymond Gérard |
Publisher | : Springer Science & Business Media |
Total Pages | : 281 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 3322802841 |
The aim of this book is to put together all the results that are known about the existence of formal, holomorphic and singular solutions of singular non linear partial differential equations.
Author | : R.P. Agarwal |
Publisher | : Springer Science & Business Media |
Total Pages | : 428 |
Release | : 2003-07-31 |
Genre | : Mathematics |
ISBN | : 9781402014574 |
In the last century many problems which arose in the science, engineer ing and technology literature involved nonlinear complex phenomena. In many situations these natural phenomena give rise to (i). ordinary differ ential equations which are singular in the independent and/or dependent variables together with initial and boundary conditions, and (ii). Volterra and Fredholm type integral equations. As one might expect general exis tence results were difficult to establish for the problems which arose. Indeed until the early 1990's only very special examples were examined and these examples were usually tackled using some special device, which was usually only applicable to the particular problem under investigation. However in the 1990's new results in inequality and fixed point theory were used to present a very general existence theory for singular problems. This mono graph presents an up to date account of the literature on singular problems. One of our aims also is to present recent theory on singular differential and integral equations to a new and wider audience. The book presents a compact, thorough, and self-contained account for singular problems. An important feature of this book is that we illustrate how easily the theory can be applied to discuss many real world examples of current interest. In Chapter 1 we study differential equations which are singular in the independent variable. We begin with some standard notation in Section 1. 2 and introduce LP-Caratheodory functions. Some fixed point theorems, the Arzela- Ascoli theorem and Banach's theorem are also stated here.
Author | : Steven Holzner |
Publisher | : John Wiley & Sons |
Total Pages | : 315 |
Release | : 2009-06-29 |
Genre | : Mathematics |
ISBN | : 0470543892 |
Make sense of these difficult equations Improve your problem-solving skills Practice with clear, concise examples Score higher on standardized tests and exams Get the confidence and the skills you need to master differential equations! Need to know how to solve differential equations? This easy-to-follow, hands-on workbook helps you master the basic concepts and work through the types of problems you'll encounter in your coursework. You get valuable exercises, problem-solving shortcuts, plenty of workspace, and step-by-step solutions to every equation. You'll also memorize the most-common types of differential equations, see how to avoid common mistakes, get tips and tricks for advanced problems, improve your exam scores, and much more! More than 100 Problems! Detailed, fully worked-out solutions to problems The inside scoop on first, second, and higher order differential equations A wealth of advanced techniques, including power series THE DUMMIES WORKBOOK WAY Quick, refresher explanations Step-by-step procedures Hands-on practice exercises Ample workspace to work out problems Online Cheat Sheet A dash of humor and fun
Author | : Elina Shishkina |
Publisher | : Academic Press |
Total Pages | : 592 |
Release | : 2020-07-24 |
Genre | : Mathematics |
ISBN | : 0128197811 |
Transmutations, Singular and Fractional Differential Equations with Applications to Mathematical Physics connects difficult problems with similar more simple ones. The book's strategy works for differential and integral equations and systems and for many theoretical and applied problems in mathematics, mathematical physics, probability and statistics, applied computer science and numerical methods. In addition to being exposed to recent advances, readers learn to use transmutation methods not only as practical tools, but also as vehicles that deliver theoretical insights.
Author | : Allaberen Ashyralyev |
Publisher | : Birkhäuser |
Total Pages | : 453 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 3034879229 |
This book explores new difference schemes for approximating the solutions of regular and singular perturbation boundary-value problems for PDEs. The construction is based on the exact difference scheme and Taylor's decomposition on the two or three points, which permits investigation of differential equations with variable coefficients and regular and singular perturbation boundary value problems.
Author | : Hans-Görg Roos |
Publisher | : Springer Science & Business Media |
Total Pages | : 599 |
Release | : 2008-09-17 |
Genre | : Mathematics |
ISBN | : 3540344675 |
This new edition incorporates new developments in numerical methods for singularly perturbed differential equations, focusing on linear convection-diffusion equations and on nonlinear flow problems that appear in computational fluid dynamics.