Singular Linear-quadratic Zero-sum Differential Games and H [infinity Symbol] Control Problems

Singular Linear-quadratic Zero-sum Differential Games and H [infinity Symbol] Control Problems
Author: Valery Y. Glizer
Publisher:
Total Pages: 0
Release: 2022
Genre: Differential games
ISBN: 9788303107053

This monograph is devoted to the analysis and solution of singular differential games and singular H [infinity symbol] control problems in both finite- and infinite-horizon settings. Expanding on the authors previous work in this area, this novel text is the first to study the aforementioned singular problems using the regularization approach. After a brief introduction, solvability conditions are presented for the regular differential games and H [infinity symbol] control problems. In the following chapter, the authors solve the singular finite-horizon linear-quadratic differential game using the regularization method. Next, they apply this method to the solution of an infinite-horizon type. The last two chapters are dedicated to the solution of singular finite-horizon and infinite-horizon linear-quadratic H [infinity symbol] control problems. The authors use theoretical and real-world examples to illustrate the results and their applicability throughout the text, and have carefully organized the content to be as self-contained as possible, making it possible to study each chapter independently or in succession. Each chapter includes its own introduction, list of notations, a brief literature review on the topic, and a corresponding bibliography. For easier readability, detailed proofs are presented in separate subsections. Singular Linear-Quadratic Zero-Sum Differential Games and H [infinity symbol] Control Problems will be of interest to researchers and engineers working in the areas of applied mathematics, dynamic games, control engineering, mechanical and aerospace engineering, electrical engineering, and biology. This book can also serve as a useful reference for graduate students in these areas.

Singular Linear-Quadratic Zero-Sum Differential Games and H∞ Control Problems

Singular Linear-Quadratic Zero-Sum Differential Games and H∞ Control Problems
Author: Valery Y. Glizer
Publisher: Springer Nature
Total Pages: 211
Release: 2022-08-29
Genre: Mathematics
ISBN: 3031070518

This monograph is devoted to the analysis and solution of singular differential games and singular $H_{\inf}$ control problems in both finite- and infinite-horizon settings. Expanding on the authors’ previous work in this area, this novel text is the first to study the aforementioned singular problems using the regularization approach. After a brief introduction, solvability conditions are presented for the regular differential games and $H_{\inf}$ control problems. In the following chapter, the authors solve the singular finite-horizon linear-quadratic differential game using the regularization method. Next, they apply this method to the solution of an infinite-horizon type. The last two chapters are dedicated to the solution of singular finite-horizon and infinite-horizon linear-quadratic $H_{\inf}$ control problems. The authors use theoretical and real-world examples to illustrate the results and their applicability throughout the text, and have carefully organized the content to be as self-contained as possible, making it possible to study each chapter independently or in succession. Each chapter includes its own introduction, list of notations, a brief literature review on the topic, and a corresponding bibliography. For easier readability, detailed proofs are presented in separate subsections. Singular Linear-Quadratic Zero-Sum Differential Games and $H_{\inf}$ Control Problems will be of interest to researchers and engineers working in the areas of applied mathematics, dynamic games, control engineering, mechanical and aerospace engineering, electrical engineering, and biology. This book can also serve as a useful reference for graduate students in these area

Adaptive Dynamic Programming for Control

Adaptive Dynamic Programming for Control
Author: Huaguang Zhang
Publisher: Springer Science & Business Media
Total Pages: 432
Release: 2012-12-14
Genre: Technology & Engineering
ISBN: 144714757X

There are many methods of stable controller design for nonlinear systems. In seeking to go beyond the minimum requirement of stability, Adaptive Dynamic Programming in Discrete Time approaches the challenging topic of optimal control for nonlinear systems using the tools of adaptive dynamic programming (ADP). The range of systems treated is extensive; affine, switched, singularly perturbed and time-delay nonlinear systems are discussed as are the uses of neural networks and techniques of value and policy iteration. The text features three main aspects of ADP in which the methods proposed for stabilization and for tracking and games benefit from the incorporation of optimal control methods: • infinite-horizon control for which the difficulty of solving partial differential Hamilton–Jacobi–Bellman equations directly is overcome, and proof provided that the iterative value function updating sequence converges to the infimum of all the value functions obtained by admissible control law sequences; • finite-horizon control, implemented in discrete-time nonlinear systems showing the reader how to obtain suboptimal control solutions within a fixed number of control steps and with results more easily applied in real systems than those usually gained from infinite-horizon control; • nonlinear games for which a pair of mixed optimal policies are derived for solving games both when the saddle point does not exist, and, when it does, avoiding the existence conditions of the saddle point. Non-zero-sum games are studied in the context of a single network scheme in which policies are obtained guaranteeing system stability and minimizing the individual performance function yielding a Nash equilibrium. In order to make the coverage suitable for the student as well as for the expert reader, Adaptive Dynamic Programming in Discrete Time: • establishes the fundamental theory involved clearly with each chapter devoted to a clearly identifiable control paradigm; • demonstrates convergence proofs of the ADP algorithms to deepen understanding of the derivation of stability and convergence with the iterative computational methods used; and • shows how ADP methods can be put to use both in simulation and in real applications. This text will be of considerable interest to researchers interested in optimal control and its applications in operations research, applied mathematics computational intelligence and engineering. Graduate students working in control and operations research will also find the ideas presented here to be a source of powerful methods for furthering their study.

LQ Dynamic Optimization and Differential Games

LQ Dynamic Optimization and Differential Games
Author: Jacob Engwerda
Publisher: John Wiley & Sons
Total Pages: 514
Release: 2005-06-17
Genre: Business & Economics
ISBN: 9780470015247

Game theory is the theory of social situations, and the majority of research into the topic focuses on how groups of people interact by developing formulas and algorithms to identify optimal strategies and to predict the outcome of interactions. Only fifty years old, it has already revolutionized economics and finance, and is spreading rapidly to a wide variety of fields. LQ Dynamic Optimization and Differential Games is an assessment of the state of the art in its field and the first modern book on linear-quadratic game theory, one of the most commonly used tools for modelling and analysing strategic decision making problems in economics and management. Linear quadratic dynamic models have a long tradition in economics, operations research and control engineering; and the author begins by describing the one-decision maker LQ dynamic optimization problem before introducing LQ differential games. Covers cooperative and non-cooperative scenarios, and treats the standard information structures (open-loop and feedback). Includes real-life economic examples to illustrate theoretical concepts and results. Presents problem formulations and sound mathematical problem analysis. Includes exercises and solutions, enabling use for self-study or as a course text. Supported by a website featuring solutions to exercises, further examples and computer code for numerical examples. LQ Dynamic Optimization and Differential Games offers a comprehensive introduction to the theory and practice of this extensively used class of economic models, and will appeal to applied mathematicians and econometricians as well as researchers and senior undergraduate/graduate students in economics, mathematics, engineering and management science.

H∞-Optimal Control and Related Minimax Design Problems

H∞-Optimal Control and Related Minimax Design Problems
Author: Tamer Başar
Publisher: Springer Science & Business Media
Total Pages: 417
Release: 2009-05-21
Genre: Science
ISBN: 0817647570

This book is devoted to one of the fastest developing fields in modern control theory - the so-called H-infinity optimal control theory. The book can be used for a second or third year graduate level course in the subject, and researchers working in the area will find the book useful as a standard reference. Based mostly on recent work of the authors, the book is written on a good mathematical level. Many results in it are original, interesting, and inspirational. The topic is central to modern control and hence this definitive book is highly recommended to anyone who wishes to catch up with important theoretical developments in applied mathematics and control.

Matrix Riccati Equations in Control and Systems Theory

Matrix Riccati Equations in Control and Systems Theory
Author: Hisham Abou-Kandil
Publisher: Birkhäuser
Total Pages: 584
Release: 2012-12-06
Genre: Science
ISBN: 3034880812

The authors present the theory of symmetric (Hermitian) matrix Riccati equations and contribute to the development of the theory of non-symmetric Riccati equations as well as to certain classes of coupled and generalized Riccati equations occurring in differential games and stochastic control. The volume offers a complete treatment of generalized and coupled Riccati equations. It deals with differential, discrete-time, algebraic or periodic symmetric and non-symmetric equations, with special emphasis on those equations appearing in control and systems theory. Extensions to Riccati theory allow to tackle robust control problems in a unified approach. The book makes available classical and recent results to engineers and mathematicians alike. It is accessible to graduate students in mathematics, applied mathematics, control engineering, physics or economics. Researchers working in any of the fields where Riccati equations are used can find the main results with the proper mathematical background.

Feedback Systems

Feedback Systems
Author: Karl Johan Åström
Publisher: Princeton University Press
Total Pages:
Release: 2021-02-02
Genre: Technology & Engineering
ISBN: 069121347X

The essential introduction to the principles and applications of feedback systems—now fully revised and expanded This textbook covers the mathematics needed to model, analyze, and design feedback systems. Now more user-friendly than ever, this revised and expanded edition of Feedback Systems is a one-volume resource for students and researchers in mathematics and engineering. It has applications across a range of disciplines that utilize feedback in physical, biological, information, and economic systems. Karl Åström and Richard Murray use techniques from physics, computer science, and operations research to introduce control-oriented modeling. They begin with state space tools for analysis and design, including stability of solutions, Lyapunov functions, reachability, state feedback observability, and estimators. The matrix exponential plays a central role in the analysis of linear control systems, allowing a concise development of many of the key concepts for this class of models. Åström and Murray then develop and explain tools in the frequency domain, including transfer functions, Nyquist analysis, PID control, frequency domain design, and robustness. Features a new chapter on design principles and tools, illustrating the types of problems that can be solved using feedback Includes a new chapter on fundamental limits and new material on the Routh-Hurwitz criterion and root locus plots Provides exercises at the end of every chapter Comes with an electronic solutions manual An ideal textbook for undergraduate and graduate students Indispensable for researchers seeking a self-contained resource on control theory

Linear Matrix Inequalities in System and Control Theory

Linear Matrix Inequalities in System and Control Theory
Author: Stephen Boyd
Publisher: SIAM
Total Pages: 203
Release: 1994-01-01
Genre: Mathematics
ISBN: 9781611970777

In this book the authors reduce a wide variety of problems arising in system and control theory to a handful of convex and quasiconvex optimization problems that involve linear matrix inequalities. These optimization problems can be solved using recently developed numerical algorithms that not only are polynomial-time but also work very well in practice; the reduction therefore can be considered a solution to the original problems. This book opens up an important new research area in which convex optimization is combined with system and control theory, resulting in the solution of a large number of previously unsolved problems.