Monte Carlo Simulation and Resampling Methods for Social Science

Monte Carlo Simulation and Resampling Methods for Social Science
Author: Thomas M. Carsey
Publisher: SAGE Publications
Total Pages: 304
Release: 2013-08-05
Genre: Social Science
ISBN: 1483324923

Taking the topics of a quantitative methodology course and illustrating them through Monte Carlo simulation, this book examines abstract principles, such as bias, efficiency, and measures of uncertainty in an intuitive, visual way. Instead of thinking in the abstract about what would happen to a particular estimator "in repeated samples," the book uses simulation to actually create those repeated samples and summarize the results. The book includes basic examples appropriate for readers learning the material for the first time, as well as more advanced examples that a researcher might use to evaluate an estimator he or she was using in an actual research project. The book also covers a wide range of topics related to Monte Carlo simulation, such as resampling methods, simulations of substantive theory, simulation of quantities of interest (QI) from model results, and cross-validation. Complete R code from all examples is provided so readers can replicate every analysis presented using R.

Rare Event Simulation using Monte Carlo Methods

Rare Event Simulation using Monte Carlo Methods
Author: Gerardo Rubino
Publisher: John Wiley & Sons
Total Pages: 278
Release: 2009-03-18
Genre: Mathematics
ISBN: 9780470745410

In a probabilistic model, a rare event is an event with a very small probability of occurrence. The forecasting of rare events is a formidable task but is important in many areas. For instance a catastrophic failure in a transport system or in a nuclear power plant, the failure of an information processing system in a bank, or in the communication network of a group of banks, leading to financial losses. Being able to evaluate the probability of rare events is therefore a critical issue. Monte Carlo Methods, the simulation of corresponding models, are used to analyze rare events. This book sets out to present the mathematical tools available for the efficient simulation of rare events. Importance sampling and splitting are presented along with an exposition of how to apply these tools to a variety of fields ranging from performance and dependability evaluation of complex systems, typically in computer science or in telecommunications, to chemical reaction analysis in biology or particle transport in physics. Graduate students, researchers and practitioners who wish to learn and apply rare event simulation techniques will find this book beneficial.

Essentials of Monte Carlo Simulation

Essentials of Monte Carlo Simulation
Author: Nick T. Thomopoulos
Publisher: Springer Science & Business Media
Total Pages: 184
Release: 2012-12-19
Genre: Mathematics
ISBN: 1461460220

Essentials of Monte Carlo Simulation focuses on the fundamentals of Monte Carlo methods using basic computer simulation techniques. The theories presented in this text deal with systems that are too complex to solve analytically. As a result, readers are given a system of interest and constructs using computer code, as well as algorithmic models to emulate how the system works internally. After the models are run several times, in a random sample way, the data for each output variable(s) of interest is analyzed by ordinary statistical methods. This book features 11 comprehensive chapters, and discusses such key topics as random number generators, multivariate random variates, and continuous random variates. Over 100 numerical examples are presented as part of the appendix to illustrate useful real world applications. The text also contains an easy to read presentation with minimal use of difficult mathematical concepts. Very little has been published in the area of computer Monte Carlo simulation methods, and this book will appeal to students and researchers in the fields of Mathematics and Statistics.

Monte Carlo Simulation

Monte Carlo Simulation
Author: Christopher Z. Mooney
Publisher: SAGE
Total Pages: 116
Release: 1997-04-07
Genre: Mathematics
ISBN: 9780803959439

Aimed at researchers across the social sciences, this book explains the logic behind the Monte Carlo simulation method and demonstrates its uses for social and behavioural research.

Introductory Econometrics

Introductory Econometrics
Author: Humberto Barreto
Publisher: Cambridge University Press
Total Pages: 810
Release: 2006
Genre: Business & Economics
ISBN: 9780521843195

This highly accessible and innovative text with supporting web site uses Excel (R) to teach the core concepts of econometrics without advanced mathematics. It enables students to use Monte Carlo simulations in order to understand the data generating process and sampling distribution. Intelligent repetition of concrete examples effectively conveys the properties of the ordinary least squares (OLS) estimator and the nature of heteroskedasticity and autocorrelation. Coverage includes omitted variables, binary response models, basic time series, and simultaneous equations. The authors teach students how to construct their own real-world data sets drawn from the internet, which they can analyze with Excel (R) or with other econometric software. The accompanying web site with text support can be found at www.wabash.edu/econometrics.

Monte-Carlo Simulation-Based Statistical Modeling

Monte-Carlo Simulation-Based Statistical Modeling
Author: Ding-Geng (Din) Chen
Publisher: Springer
Total Pages: 440
Release: 2017-02-01
Genre: Medical
ISBN: 9811033072

This book brings together expert researchers engaged in Monte-Carlo simulation-based statistical modeling, offering them a forum to present and discuss recent issues in methodological development as well as public health applications. It is divided into three parts, with the first providing an overview of Monte-Carlo techniques, the second focusing on missing data Monte-Carlo methods, and the third addressing Bayesian and general statistical modeling using Monte-Carlo simulations. The data and computer programs used here will also be made publicly available, allowing readers to replicate the model development and data analysis presented in each chapter, and to readily apply them in their own research. Featuring highly topical content, the book has the potential to impact model development and data analyses across a wide spectrum of fields, and to spark further research in this direction.

Introducing Monte Carlo Methods with R

Introducing Monte Carlo Methods with R
Author: Christian Robert
Publisher: Springer Science & Business Media
Total Pages: 297
Release: 2010
Genre: Computers
ISBN: 1441915753

This book covers the main tools used in statistical simulation from a programmer’s point of view, explaining the R implementation of each simulation technique and providing the output for better understanding and comparison.

The Monte Carlo Simulation Method for System Reliability and Risk Analysis

The Monte Carlo Simulation Method for System Reliability and Risk Analysis
Author: Enrico Zio
Publisher: Springer Science & Business Media
Total Pages: 204
Release: 2012-11-02
Genre: Technology & Engineering
ISBN: 1447145887

Monte Carlo simulation is one of the best tools for performing realistic analysis of complex systems as it allows most of the limiting assumptions on system behavior to be relaxed. The Monte Carlo Simulation Method for System Reliability and Risk Analysis comprehensively illustrates the Monte Carlo simulation method and its application to reliability and system engineering. Readers are given a sound understanding of the fundamentals of Monte Carlo sampling and simulation and its application for realistic system modeling. Whilst many of the topics rely on a high-level understanding of calculus, probability and statistics, simple academic examples will be provided in support to the explanation of the theoretical foundations to facilitate comprehension of the subject matter. Case studies will be introduced to provide the practical value of the most advanced techniques. This detailed approach makes The Monte Carlo Simulation Method for System Reliability and Risk Analysis a key reference for senior undergraduate and graduate students as well as researchers and practitioners. It provides a powerful tool for all those involved in system analysis for reliability, maintenance and risk evaluations.

Simulation and the Monte Carlo Method

Simulation and the Monte Carlo Method
Author: Reuven Y. Rubinstein
Publisher: John Wiley & Sons
Total Pages: 470
Release: 2016-10-21
Genre: Mathematics
ISBN: 1118632389

This accessible new edition explores the major topics in Monte Carlo simulation that have arisen over the past 30 years and presents a sound foundation for problem solving Simulation and the Monte Carlo Method, Third Edition reflects the latest developments in the field and presents a fully updated and comprehensive account of the state-of-the-art theory, methods and applications that have emerged in Monte Carlo simulation since the publication of the classic First Edition over more than a quarter of a century ago. While maintaining its accessible and intuitive approach, this revised edition features a wealth of up-to-date information that facilitates a deeper understanding of problem solving across a wide array of subject areas, such as engineering, statistics, computer science, mathematics, and the physical and life sciences. The book begins with a modernized introduction that addresses the basic concepts of probability, Markov processes, and convex optimization. Subsequent chapters discuss the dramatic changes that have occurred in the field of the Monte Carlo method, with coverage of many modern topics including: Markov Chain Monte Carlo, variance reduction techniques such as importance (re-)sampling, and the transform likelihood ratio method, the score function method for sensitivity analysis, the stochastic approximation method and the stochastic counter-part method for Monte Carlo optimization, the cross-entropy method for rare events estimation and combinatorial optimization, and application of Monte Carlo techniques for counting problems. An extensive range of exercises is provided at the end of each chapter, as well as a generous sampling of applied examples. The Third Edition features a new chapter on the highly versatile splitting method, with applications to rare-event estimation, counting, sampling, and optimization. A second new chapter introduces the stochastic enumeration method, which is a new fast sequential Monte Carlo method for tree search. In addition, the Third Edition features new material on: • Random number generation, including multiple-recursive generators and the Mersenne Twister • Simulation of Gaussian processes, Brownian motion, and diffusion processes • Multilevel Monte Carlo method • New enhancements of the cross-entropy (CE) method, including the “improved” CE method, which uses sampling from the zero-variance distribution to find the optimal importance sampling parameters • Over 100 algorithms in modern pseudo code with flow control • Over 25 new exercises Simulation and the Monte Carlo Method, Third Edition is an excellent text for upper-undergraduate and beginning graduate courses in stochastic simulation and Monte Carlo techniques. The book also serves as a valuable reference for professionals who would like to achieve a more formal understanding of the Monte Carlo method. Reuven Y. Rubinstein, DSc, was Professor Emeritus in the Faculty of Industrial Engineering and Management at Technion-Israel Institute of Technology. He served as a consultant at numerous large-scale organizations, such as IBM, Motorola, and NEC. The author of over 100 articles and six books, Dr. Rubinstein was also the inventor of the popular score-function method in simulation analysis and generic cross-entropy methods for combinatorial optimization and counting. Dirk P. Kroese, PhD, is a Professor of Mathematics and Statistics in the School of Mathematics and Physics of The University of Queensland, Australia. He has published over 100 articles and four books in a wide range of areas in applied probability and statistics, including Monte Carlo methods, cross-entropy, randomized algorithms, tele-traffic c theory, reliability, computational statistics, applied probability, and stochastic modeling.

Handbook of Monte Carlo Methods

Handbook of Monte Carlo Methods
Author: Dirk P. Kroese
Publisher: John Wiley & Sons
Total Pages: 627
Release: 2013-06-06
Genre: Mathematics
ISBN: 1118014952

A comprehensive overview of Monte Carlo simulation that explores the latest topics, techniques, and real-world applications More and more of today’s numerical problems found in engineering and finance are solved through Monte Carlo methods. The heightened popularity of these methods and their continuing development makes it important for researchers to have a comprehensive understanding of the Monte Carlo approach. Handbook of Monte Carlo Methods provides the theory, algorithms, and applications that helps provide a thorough understanding of the emerging dynamics of this rapidly-growing field. The authors begin with a discussion of fundamentals such as how to generate random numbers on a computer. Subsequent chapters discuss key Monte Carlo topics and methods, including: Random variable and stochastic process generation Markov chain Monte Carlo, featuring key algorithms such as the Metropolis-Hastings method, the Gibbs sampler, and hit-and-run Discrete-event simulation Techniques for the statistical analysis of simulation data including the delta method, steady-state estimation, and kernel density estimation Variance reduction, including importance sampling, latin hypercube sampling, and conditional Monte Carlo Estimation of derivatives and sensitivity analysis Advanced topics including cross-entropy, rare events, kernel density estimation, quasi Monte Carlo, particle systems, and randomized optimization The presented theoretical concepts are illustrated with worked examples that use MATLAB®, a related Web site houses the MATLAB® code, allowing readers to work hands-on with the material and also features the author's own lecture notes on Monte Carlo methods. Detailed appendices provide background material on probability theory, stochastic processes, and mathematical statistics as well as the key optimization concepts and techniques that are relevant to Monte Carlo simulation. Handbook of Monte Carlo Methods is an excellent reference for applied statisticians and practitioners working in the fields of engineering and finance who use or would like to learn how to use Monte Carlo in their research. It is also a suitable supplement for courses on Monte Carlo methods and computational statistics at the upper-undergraduate and graduate levels.