Structural Vector Autoregressive Analysis

Structural Vector Autoregressive Analysis
Author: Lutz Kilian
Publisher: Cambridge University Press
Total Pages: 757
Release: 2017-11-23
Genre: Business & Economics
ISBN: 1108186874

Structural vector autoregressive (VAR) models are important tools for empirical work in macroeconomics, finance, and related fields. This book not only reviews the many alternative structural VAR approaches discussed in the literature, but also highlights their pros and cons in practice. It provides guidance to empirical researchers as to the most appropriate modeling choices, methods of estimating, and evaluating structural VAR models. The book traces the evolution of the structural VAR methodology and contrasts it with other common methodologies, including dynamic stochastic general equilibrium (DSGE) models. It is intended as a bridge between the often quite technical econometric literature on structural VAR modeling and the needs of empirical researchers. The focus is not on providing the most rigorous theoretical arguments, but on enhancing the reader's understanding of the methods in question and their assumptions. Empirical examples are provided for illustration.

Multiple Time Series Models

Multiple Time Series Models
Author: Patrick T. Brandt
Publisher: SAGE
Total Pages: 121
Release: 2007
Genre: Mathematics
ISBN: 1412906563

Many analyses of time series data involve multiple, related variables. Modeling Multiple Time Series presents many specification choices and special challenges. This book reviews the main competing approaches to modeling multiple time series: simultaneous equations, ARIMA, error correction models, and vector autoregression. The text focuses on vector autoregression (VAR) models as a generalization of the other approaches mentioned. Specification, estimation, and inference using these models is discussed. The authors also review arguments for and against using multi-equation time series models. Two complete, worked examples show how VAR models can be employed. An appendix discusses software that can be used for multiple time series models and software code for replicating the examples is available. Key Features: * Offers a detailed comparison of different time series methods and approaches. * Includes a self-contained introduction to vector autoregression modeling. * Situates multiple time series modeling as a natural extension of commonly taught statistical models.

The Quest for Regional Integration in the East African Community

The Quest for Regional Integration in the East African Community
Author: Mr.Paulo Drummond
Publisher: International Monetary Fund
Total Pages: 308
Release: 2015-01-12
Genre: Business & Economics
ISBN: 1498322956

The countries in the East African Community (EAC) are among the fastest growing economies in sub-Saharan Africa. The EAC countries are making significant progress toward financial integration, including harmonization of supervisory arrangements and practices and the modernization of monetary policy frameworks. This book focuses on regional integration in the EAC and argues that the establishment of a time table for the eliminating the sensitive-products list and establishing a supranational legal framework for resolving trade disputes are important reforms that should foster regional integration.

The Cointegrated VAR Model

The Cointegrated VAR Model
Author: Katarina Juselius
Publisher: OUP Oxford
Total Pages: 478
Release: 2006-12-07
Genre: Business & Economics
ISBN: 0191622966

This valuable text provides a comprehensive introduction to VAR modelling and how it can be applied. In particular, the author focuses on the properties of the Cointegrated VAR model and its implications for macroeconomic inference when data are non-stationary. The text provides a number of insights into the links between statistical econometric modelling and economic theory and gives a thorough treatment of identification of the long-run and short-run structure as well as of the common stochastic trends and the impulse response functions, providing in each case illustrations of applicability. This book presents the main ingredients of the Copenhagen School of Time-Series Econometrics in a transparent and coherent framework. The distinguishing feature of this school is that econometric theory and applications have been developed in close cooperation. The guiding principle is that good econometric work should take econometrics, institutions, and economics seriously. The author uses a single data set throughout most of the book to guide the reader through the econometric theory while also revealing the full implications for the underlying economic model. To test ensure full understanding the book concludes with the introduction of two new data sets to combine readers understanding of econometric theory and economic models, with economic reality.

Structural Macroeconometrics

Structural Macroeconometrics
Author: David N. DeJong
Publisher: Princeton University Press
Total Pages: 435
Release: 2011-10-03
Genre: Business & Economics
ISBN: 1400840503

The revised edition of the essential resource on macroeconometrics Structural Macroeconometrics provides a thorough overview and in-depth exploration of methodologies, models, and techniques used to analyze forces shaping national economies. In this thoroughly revised second edition, David DeJong and Chetan Dave emphasize time series econometrics and unite theoretical and empirical research, while taking into account important new advances in the field. The authors detail strategies for solving dynamic structural models and present the full range of methods for characterizing and evaluating empirical implications, including calibration exercises, method-of-moment procedures, and likelihood-based procedures, both classical and Bayesian. The authors look at recent strides that have been made to enhance numerical efficiency, consider the expanded applicability of dynamic factor models, and examine the use of alternative assumptions involving learning and rational inattention on the part of decision makers. The treatment of methodologies for obtaining nonlinear model representations has been expanded, and linear and nonlinear model representations are integrated throughout the text. The book offers a rich array of implementation algorithms, sample empirical applications, and supporting computer code. Structural Macroeconometrics is the ideal textbook for graduate students seeking an introduction to macroeconomics and econometrics, and for advanced students pursuing applied research in macroeconomics. The book's historical perspective, along with its broad presentation of alternative methodologies, makes it an indispensable resource for academics and professionals.

Analysis of Integrated and Cointegrated Time Series with R

Analysis of Integrated and Cointegrated Time Series with R
Author: Bernhard Pfaff
Publisher: Springer Science & Business Media
Total Pages: 193
Release: 2008-09-03
Genre: Business & Economics
ISBN: 0387759670

This book is designed for self study. The reader can apply the theoretical concepts directly within R by following the examples.

Likelihood-based Inference in Cointegrated Vector Autoregressive Models

Likelihood-based Inference in Cointegrated Vector Autoregressive Models
Author: Søren Johansen
Publisher: Oxford University Press, USA
Total Pages: 280
Release: 1995
Genre: Business & Economics
ISBN: 0198774508

This monograph is concerned with the statistical analysis of multivariate systems of non-stationary time series of type I. It applies the concepts of cointegration and common trends in the framework of the Gaussian vector autoregressive model.

Macroeconomic Forecasting in the Era of Big Data

Macroeconomic Forecasting in the Era of Big Data
Author: Peter Fuleky
Publisher: Springer Nature
Total Pages: 716
Release: 2019-11-28
Genre: Business & Economics
ISBN: 3030311503

This book surveys big data tools used in macroeconomic forecasting and addresses related econometric issues, including how to capture dynamic relationships among variables; how to select parsimonious models; how to deal with model uncertainty, instability, non-stationarity, and mixed frequency data; and how to evaluate forecasts, among others. Each chapter is self-contained with references, and provides solid background information, while also reviewing the latest advances in the field. Accordingly, the book offers a valuable resource for researchers, professional forecasters, and students of quantitative economics.

Econometric Modelling with Time Series

Econometric Modelling with Time Series
Author: Vance Martin
Publisher: Cambridge University Press
Total Pages: 925
Release: 2013
Genre: Business & Economics
ISBN: 0521139813

"Maximum likelihood estimation is a general method for estimating the parameters of econometric models from observed data. The principle of maximum likelihood plays a central role in the exposition of this book, since a number of estimators used in econometrics can be derived within this framework. Examples include ordinary least squares, generalized least squares and full-information maximum likelihood. In deriving the maximum likelihood estimator, a key concept is the joint probability density function (pdf) of the observed random variables, yt. Maximum likelihood estimation requires that the following conditions are satisfied. (1) The form of the joint pdf of yt is known. (2) The specification of the moments of the joint pdf are known. (3) The joint pdf can be evaluated for all values of the parameters, 9. Parts ONE and TWO of this book deal with models in which all these conditions are satisfied. Part THREE investigates models in which these conditions are not satisfied and considers four important cases. First, if the distribution of yt is misspecified, resulting in both conditions 1 and 2 being violated, estimation is by quasi-maximum likelihood (Chapter 9). Second, if condition 1 is not satisfied, a generalized method of moments estimator (Chapter 10) is required. Third, if condition 2 is not satisfied, estimation relies on nonparametric methods (Chapter 11). Fourth, if condition 3 is violated, simulation-based estimation methods are used (Chapter 12). 1.2 Motivating Examples To highlight the role of probability distributions in maximum likelihood estimation, this section emphasizes the link between observed sample data and 4 The Maximum Likelihood Principle the probability distribution from which they are drawn"-- publisher.

Explaining and evaluating price volatility and price levels in world agricultural markets

Explaining and evaluating price volatility and price levels in world agricultural markets
Author: Palina Moleva
Publisher: Cuvillier Verlag
Total Pages: 226
Release: 2017-02-15
Genre: Science
ISBN: 3736984723

The worldwide explosions of agricultural commodity and staple food prices in the years 2007/08 and the subsequent recession-related decline in 2009 have not only surprised many market observers, but has also caused an intensive discussion about the causes, the consequences and the necessary policy responses. The new price spike in the years 2011 until 2013 and the current price crisis, especially for dairy and meat products since 2014/15, revived this debate again and raised the question, of how to explain and to evaluate such extreme level shifts and volatilities of agricultural prices, and where the prices move in the long run.