Sieve Methods Exponential Sums And Their Applications In Number Theory
Download Sieve Methods Exponential Sums And Their Applications In Number Theory full books in PDF, epub, and Kindle. Read online free Sieve Methods Exponential Sums And Their Applications In Number Theory ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : G. R. H. Greaves |
Publisher | : Cambridge University Press |
Total Pages | : 360 |
Release | : 1997-01-30 |
Genre | : Mathematics |
ISBN | : 0521589576 |
State-of-the-art analytic number theory proceedings.
Author | : George Greaves |
Publisher | : Springer Science & Business Media |
Total Pages | : 312 |
Release | : 2013-03-09 |
Genre | : Mathematics |
ISBN | : 366204658X |
This book surveys the current state of the "small" sieve methods developed by Brun, Selberg and later workers. The book is suitable for university graduates making their first acquaintance with the subject, leading them towards the frontiers of modern research and unsolved problems in the subject area.
Author | : Igor Shparlinski |
Publisher | : Springer Science & Business Media |
Total Pages | : 532 |
Release | : 2013-03-09 |
Genre | : Mathematics |
ISBN | : 940159239X |
This book is mainly devoted to some computational and algorithmic problems in finite fields such as, for example, polynomial factorization, finding irreducible and primitive polynomials, the distribution of these primitive polynomials and of primitive points on elliptic curves, constructing bases of various types and new applications of finite fields to other areas of mathematics. For completeness we in clude two special chapters on some recent advances and applications of the theory of congruences (optimal coefficients, congruential pseudo-random number gener ators, modular arithmetic, etc.) and computational number theory (primality testing, factoring integers, computation in algebraic number theory, etc.). The problems considered here have many applications in Computer Science, Cod ing Theory, Cryptography, Numerical Methods, and so on. There are a few books devoted to more general questions, but the results contained in this book have not till now been collected under one cover. In the present work the author has attempted to point out new links among different areas of the theory of finite fields. It contains many very important results which previously could be found only in widely scattered and hardly available conference proceedings and journals. In particular, we extensively review results which originally appeared only in Russian, and are not well known to mathematicians outside the former USSR.
Author | : |
Publisher | : Cambridge University Press |
Total Pages | : 248 |
Release | : |
Genre | : |
ISBN | : |
Author | : Andrew Pressley |
Publisher | : Cambridge University Press |
Total Pages | : 246 |
Release | : 2002-01-17 |
Genre | : Mathematics |
ISBN | : 9781139437028 |
This book comprises an overview of the material presented at the 1999 Durham Symposium on Quantum Groups and includes contributions from many of the world's leading figures in this area. It will be of interest to researchers and will also be useful as a reference text for graduate courses.
Author | : R. Bautista |
Publisher | : Cambridge University Press |
Total Pages | : 463 |
Release | : 2009-09-17 |
Genre | : Mathematics |
ISBN | : 0521757681 |
A detailed account of main results in the theory of differential tensor algebras.
Author | : Igor Dolgachev |
Publisher | : Cambridge University Press |
Total Pages | : 244 |
Release | : 2003-08-07 |
Genre | : Mathematics |
ISBN | : 9780521525480 |
The primary goal of this 2003 book is to give a brief introduction to the main ideas of algebraic and geometric invariant theory. It assumes only a minimal background in algebraic geometry, algebra and representation theory. Topics covered include the symbolic method for computation of invariants on the space of homogeneous forms, the problem of finite-generatedness of the algebra of invariants, the theory of covariants and constructions of categorical and geometric quotients. Throughout, the emphasis is on concrete examples which originate in classical algebraic geometry. Based on lectures given at University of Michigan, Harvard University and Seoul National University, the book is written in an accessible style and contains many examples and exercises. A novel feature of the book is a discussion of possible linearizations of actions and the variation of quotients under the change of linearization. Also includes the construction of toric varieties as torus quotients of affine spaces.
Author | : Glyn Harman |
Publisher | : Princeton University Press |
Total Pages | : 378 |
Release | : 2020-05-26 |
Genre | : Mathematics |
ISBN | : 0691202990 |
This book seeks to describe the rapid development in recent decades of sieve methods able to detect prime numbers. The subject began with Eratosthenes in antiquity, took on new shape with Legendre's form of the sieve, was substantially reworked by Ivan M. Vinogradov and Yuri V. Linnik, but came into its own with Robert C. Vaughan and important contributions from others, notably Roger Heath-Brown and Henryk Iwaniec. Prime-Detecting Sieves breaks new ground by bringing together several different types of problems that have been tackled with modern sieve methods and by discussing the ideas common to each, in particular the use of Type I and Type II information. No other book has undertaken such a systematic treatment of prime-detecting sieves. Among the many topics Glyn Harman covers are primes in short intervals, the greatest prime factor of the sequence of shifted primes, Goldbach numbers in short intervals, the distribution of Gaussian primes, and the recent work of John Friedlander and Iwaniec on primes that are a sum of a square and a fourth power, and Heath-Brown's work on primes represented as a cube plus twice a cube. This book contains much that is accessible to beginning graduate students, yet also provides insights that will benefit established researchers.
Author | : Sergey Bezuglyi |
Publisher | : Cambridge University Press |
Total Pages | : 276 |
Release | : 2003-12-08 |
Genre | : Mathematics |
ISBN | : 9780521533652 |
This book contains a collection of survey papers by leading researchers in ergodic theory, low-dimensional and topological dynamics and it comprises nine chapters on a range of important topics. These include: the role and usefulness of ultrafilters in ergodic theory, topological dynamics and Ramsey theory; topological aspects of kneading theory together with an analogous 2-dimensional theory called pruning; the dynamics of Markov odometers, Bratteli-Vershik diagrams and orbit equivalence of non-singular automorphisms; geometric proofs of Mather's connecting and accelerating theorems; recent results in one dimensional smooth dynamics; periodic points of nonexpansive maps; arithmetic dynamics; the defect of factor maps; entropy theory for actions of countable amenable groups.
Author | : R.P. Bambah |
Publisher | : Birkhäuser |
Total Pages | : 525 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 303487023X |
The Indian National Science Academy on the occasion ofthe Golden Jubilee Celebration (Fifty years of India's Independence) decided to publish a number of monographs on the selected fields. The editorial board of INS A invited us to prepare a special monograph in Number Theory. In reponse to this assignment, we invited several eminent Number Theorists to contribute expository/research articles for this monograph on Number Theory. Al though some ofthose invited, due to other preoccupations-could not respond positively to our invitation, we did receive fairly encouraging response from many eminent and creative number theorists throughout the world. These articles are presented herewith in a logical order. We are grateful to all those mathematicians who have sent us their articles. We hope that this monograph will have a significant impact on further development in this subject. R. P. Bambah v. C. Dumir R. J. Hans-Gill A Centennial History of the Prime Number Theorem Tom M. Apostol The Prime Number Theorem Among the thousands of discoveries made by mathematicians over the centuries, some stand out as significant landmarks. One of these is the prime number theorem, which describes the asymptotic distribution of prime numbers. It can be stated in various equivalent forms, two of which are: x (I) K(X) '" -I - as x --+ 00, ogx and Pn '" n log n as n --+ 00. (2) In (1), K(X) denotes the number of primes P ::s x for any x > O.