Forecasting: principles and practice

Forecasting: principles and practice
Author: Rob J Hyndman
Publisher: OTexts
Total Pages: 380
Release: 2018-05-08
Genre: Business & Economics
ISBN: 0987507117

Forecasting is required in many situations. Stocking an inventory may require forecasts of demand months in advance. Telecommunication routing requires traffic forecasts a few minutes ahead. Whatever the circumstances or time horizons involved, forecasting is an important aid in effective and efficient planning. This textbook provides a comprehensive introduction to forecasting methods and presents enough information about each method for readers to use them sensibly.

Principles of Forecasting

Principles of Forecasting
Author: J.S. Armstrong
Publisher: Springer Science & Business Media
Total Pages: 880
Release: 2001
Genre: Business & Economics
ISBN: 9780792374015

This handbook summarises knowledge from experts and empirical studies. It provides guidelines that can be applied in fields such as economics, sociology, and psychology. Includes a comprehensive forecasting dictionary.

A Resume of Short-range Forecasting Techniques

A Resume of Short-range Forecasting Techniques
Author: Joe S. Restivo
Publisher:
Total Pages: 18
Release: 1971
Genre: Weather forecasting
ISBN:

Certain techniques applicable to improve short-range forecasting are discussed briefly and references are furnished from which the reader can obtain detailed information on the various methods. (Author).

Electrical Load Forecasting

Electrical Load Forecasting
Author: S.A. Soliman
Publisher: Elsevier
Total Pages: 441
Release: 2010-05-26
Genre: Business & Economics
ISBN: 0123815444

Succinct and understandable, this book is a step-by-step guide to the mathematics and construction of electrical load forecasting models. Written by one of the world’s foremost experts on the subject, Electrical Load Forecasting provides a brief discussion of algorithms, their advantages and disadvantages and when they are best utilized. The book begins with a good description of the basic theory and models needed to truly understand how the models are prepared so that they are not just blindly plugging and chugging numbers. This is followed by a clear and rigorous exposition of the statistical techniques and algorithms such as regression, neural networks, fuzzy logic, and expert systems. The book is also supported by an online computer program that allows readers to construct, validate, and run short and long term models. Step-by-step guide to model construction Construct, verify, and run short and long term models Accurately evaluate load shape and pricing Creat regional specific electrical load models

Handbook of Mechanical Engineering, 2nd Edition

Handbook of Mechanical Engineering, 2nd Edition
Author: Sadhu Singh
Publisher: S. Chand Publishing
Total Pages: 2342
Release: 2011
Genre: Technology & Engineering
ISBN: 8121935873

Handbook of Mechanical Engineering is a comprehensive text for the students of B.E./B.Tech. and the candidates preparing for various competitive examination like IES/IFS/ GATE State Services and competitive tests conducted by public and private sector organization for selecting apprentice engineers.

Forecasting and Assessing Risk of Individual Electricity Peaks

Forecasting and Assessing Risk of Individual Electricity Peaks
Author: Maria Jacob
Publisher: Springer Nature
Total Pages: 108
Release: 2019-09-25
Genre: Mathematics
ISBN: 303028669X

The overarching aim of this open access book is to present self-contained theory and algorithms for investigation and prediction of electric demand peaks. A cross-section of popular demand forecasting algorithms from statistics, machine learning and mathematics is presented, followed by extreme value theory techniques with examples. In order to achieve carbon targets, good forecasts of peaks are essential. For instance, shifting demand or charging battery depends on correct demand predictions in time. Majority of forecasting algorithms historically were focused on average load prediction. In order to model the peaks, methods from extreme value theory are applied. This allows us to study extremes without making any assumption on the central parts of demand distribution and to predict beyond the range of available data. While applied on individual loads, the techniques described in this book can be extended naturally to substations, or to commercial settings. Extreme value theory techniques presented can be also used across other disciplines, for example for predicting heavy rainfalls, wind speed, solar radiation and extreme weather events. The book is intended for students, academics, engineers and professionals that are interested in short term load prediction, energy data analytics, battery control, demand side response and data science in general.

Sustainable Statistical and Data Science Methods and Practices

Sustainable Statistical and Data Science Methods and Practices
Author: O. Olawale Awe
Publisher: Springer Nature
Total Pages: 433
Release: 2024-01-05
Genre: Computers
ISBN: 3031413520

This volume gathers papers presented at the LISA 2020 Sustainability Symposium in Kumasi, Ghana, May 2–6, 2022. They focus on sustainable methods and practices of using statistics and data science to address real-world problems. From utilizing social media for statistical collaboration to predicting obesity among rural women, and from analyzing inflation in Nigeria using machine learning to teaching data science in Africa, this book explores the intersection of data, statistics, and sustainability. With practical applications, code snippets, and case studies, this book offers valuable insights for researchers, policymakers, and data enthusiasts alike. The LISA 2020 Global Network aims to enhance statistical and data science capability in developing countries through the creation of a network of collaboration laboratories (also known as “stat labs”). These stat labs are intended to serve as engines for development by training the next generation of collaborative statisticians and data scientists, providing research infrastructure for researchers, data producers, and decision-makers, and enabling evidence-based decision-making that has a positive impact on society. The research conducted at LISA 2020 focuses on practical methods and applications for sustainable growth of statistical capacity in developing nations.