Sheaves of Algebras over Boolean Spaces

Sheaves of Algebras over Boolean Spaces
Author: Arthur Knoebel
Publisher: Springer Science & Business Media
Total Pages: 336
Release: 2011-12-16
Genre: Mathematics
ISBN: 0817646426

This unique monograph building bridges among a number of different areas of mathematics such as algebra, topology, and category theory. The author uses various tools to develop new applications of classical concepts. Detailed proofs are given for all major theorems, about half of which are completely new. Sheaves of Algebras over Boolean Spaces will take readers on a journey through sheaf theory, an important part of universal algebra. This excellent reference text is suitable for graduate students, researchers, and those who wish to learn about sheaves of algebras.

Sheaves of Algebras over Boolean Spaces

Sheaves of Algebras over Boolean Spaces
Author: Arthur Knoebel
Publisher: Springer Science & Business Media
Total Pages: 336
Release: 2011-12-15
Genre: Mathematics
ISBN: 0817642188

This unique monograph building bridges among a number of different areas of mathematics such as algebra, topology, and category theory. The author uses various tools to develop new applications of classical concepts. Detailed proofs are given for all major theorems, about half of which are completely new. Sheaves of Algebras over Boolean Spaces will take readers on a journey through sheaf theory, an important part of universal algebra. This excellent reference text is suitable for graduate students, researchers, and those who wish to learn about sheaves of algebras.

Recent Advances in the Representation Theory of Rings and $C^\ast $-Algebras by Continuous Sections

Recent Advances in the Representation Theory of Rings and $C^\ast $-Algebras by Continuous Sections
Author: John R. Liukkonen
Publisher: American Mathematical Soc.
Total Pages: 194
Release: 1974
Genre: Mathematics
ISBN: 0821818481

From March 20 through April 5, 1973, the Mathematics Department of Tulane University organized a seminar on recent progress made in the general theory of the representation of rings and topological algebras by continuous sections in sheaves and bundles. The seminar was divided into two main sections: one concerned with sheaf representation, the other with bundle representation. The first was concerned with ringed spaces, applications to logic, universal algebra and lattice theory. The second was almost exclusively devoted to C*-algebra and Hilbert space bundles or closely related material. This collection represents the majority of the papers presented by seminar participants, with the addition of three papers which were presented by title.

A Course in Universal Algebra

A Course in Universal Algebra
Author: S. Burris
Publisher: Springer
Total Pages: 276
Release: 2011-10-21
Genre: Mathematics
ISBN: 9781461381327

Universal algebra has enjoyed a particularly explosive growth in the last twenty years, and a student entering the subject now will find a bewildering amount of material to digest. This text is not intended to be encyclopedic; rather, a few themes central to universal algebra have been developed sufficiently to bring the reader to the brink of current research. The choice of topics most certainly reflects the authors' interests. Chapter I contains a brief but substantial introduction to lattices, and to the close connection between complete lattices and closure operators. In particular, everything necessary for the subsequent study of congruence lattices is included. Chapter II develops the most general and fundamental notions of uni versal algebra-these include the results that apply to all types of algebras, such as the homomorphism and isomorphism theorems. Free algebras are discussed in great detail-we use them to derive the existence of simple algebras, the rules of equational logic, and the important Mal'cev conditions. We introduce the notion of classifying a variety by properties of (the lattices of) congruences on members of the variety. Also, the center of an algebra is defined and used to characterize modules (up to polynomial equivalence). In Chapter III we show how neatly two famous results-the refutation of Euler's conjecture on orthogonal Latin squares and Kleene's character ization of languages accepted by finite automata-can be presented using universal algebra. We predict that such "applied universal algebra" will become much more prominent.

Cardinal Invariants on Boolean Algebras

Cardinal Invariants on Boolean Algebras
Author: J. Donald Monk
Publisher: Springer Science & Business Media
Total Pages: 569
Release: 2014-02-11
Genre: Mathematics
ISBN: 3034807309

This book is concerned with cardinal number valued functions defined for any Boolean algebra. Examples of such functions are independence, which assigns to each Boolean algebra the supremum of the cardinalities of its free subalgebras, and cellularity, which gives the supremum of cardinalities of sets of pairwise disjoint elements. Twenty-one such functions are studied in detail, and many more in passing. The questions considered are the behaviour of these functions under algebraic operations such as products, free products, ultraproducts, and their relationships to one another. Assuming familiarity with only the basics of Boolean algebras and set theory, through simple infinite combinatorics and forcing, the book reviews current knowledge about these functions, giving complete proofs for most facts. A special feature of the book is the attention given to open problems, of which 185 are formulated. Based on Cardinal Functions on Boolean Algebras (1990) and Cardinal Invariants on Boolean Algebras (1996) by the same author, the present work is much larger than either of these. It contains solutions to many of the open problems of the earlier volumes. Among the new topics are continuum cardinals on Boolean algebras, with a lengthy treatment of the reaping number. Diagrams at the end of the book summarize the relationships between the functions for many important classes of Boolean algebras, including interval algebras, tree algebras and superatomic algebras.

Don Pigozzi on Abstract Algebraic Logic, Universal Algebra, and Computer Science

Don Pigozzi on Abstract Algebraic Logic, Universal Algebra, and Computer Science
Author: Janusz Czelakowski
Publisher: Springer
Total Pages: 476
Release: 2018-03-20
Genre: Philosophy
ISBN: 331974772X

This book celebrates the work of Don Pigozzi on the occasion of his 80th birthday. In addition to articles written by leading specialists and his disciples, it presents Pigozzi’s scientific output and discusses his impact on the development of science. The book both catalogues his works and offers an extensive profile of Pigozzi as a person, sketching the most important events, not only related to his scientific activity, but also from his personal life. It reflects Pigozzi's contribution to the rise and development of areas such as abstract algebraic logic (AAL), universal algebra and computer science, and introduces new scientific results. Some of the papers also present chronologically ordered facts relating to the development of the disciplines he contributed to, especially abstract algebraic logic. The book offers valuable source material for historians of science, especially those interested in history of mathematics and logic.