Several Real Variables
Download Several Real Variables full books in PDF, epub, and Kindle. Read online free Several Real Variables ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Shmuel Kantorovitz |
Publisher | : Springer |
Total Pages | : 317 |
Release | : 2016-02-09 |
Genre | : Mathematics |
ISBN | : 3319279564 |
This undergraduate textbook is based on lectures given by the author on the differential and integral calculus of functions of several real variables. The book has a modern approach and includes topics such as: •The p-norms on vector space and their equivalence •The Weierstrass and Stone-Weierstrass approximation theorems •The differential as a linear functional; Jacobians, Hessians, and Taylor's theorem in several variables •The Implicit Function Theorem for a system of equations, proved via Banach’s Fixed Point Theorem •Applications to Ordinary Differential Equations •Line integrals and an introduction to surface integrals This book features numerous examples, detailed proofs, as well as exercises at the end of sections. Many of the exercises have detailed solutions, making the book suitable for self-study. Several Real Variables will be useful for undergraduate students in mathematics who have completed first courses in linear algebra and analysis of one real variable.
Author | : Martin Moskowitz |
Publisher | : World Scientific Publishing Company |
Total Pages | : 733 |
Release | : 2011-04-29 |
Genre | : Mathematics |
ISBN | : 9813100915 |
This book begins with the basics of the geometry and topology of Euclidean space and continues with the main topics in the theory of functions of several real variables including limits, continuity, differentiation and integration. All topics and in particular, differentiation and integration, are treated in depth and with mathematical rigor. The classical theorems of differentiation and integration such as the Inverse and Implicit Function theorems, Lagrange's multiplier rule, Fubini's theorem, the change of variables formula, Green's, Stokes' and Gauss' theorems are proved in detail and many of them with novel proofs. The authors develop the theory in a logical sequence building one result upon the other, enriching the development with numerous explanatory remarks and historical footnotes. A number of well chosen illustrative examples and counter-examples clarify matters and teach the reader how to apply these results and solve problems in mathematics, the other sciences and economics.Each of the chapters concludes with groups of exercises and problems, many of them with detailed solutions while others with hints or final answers. More advanced topics, such as Morse's lemma, Sard's theorem , the Weierstrass approximation theorem, the Fourier transform, Vector fields on spheres, Brouwer's fixed point theorem, Whitney's embedding theorem, Picard's theorem, and Hermite polynomials are discussed in stared sections.
Author | : Martin A. Moskowitz |
Publisher | : World Scientific |
Total Pages | : 733 |
Release | : 2011 |
Genre | : Mathematics |
ISBN | : 981429926X |
This book begins with the basics of the geometry and topology of Euclidean space and continues with the main topics in the theory of functions of several real variables including limits, continuity, differentiation and integration. All topics and in particular, differentiation and integration, are treated in depth and with mathematical rigor. The classical theorems of differentiation and integration are proved in detail and many of them with novel proofs. The authors develop the theory in a logical sequence building one theorem upon the other, enriching the development with numerous explanatory remarks and historical footnotes. A number of well chosen illustrative examples and counter-examples clarify the theory and teach the reader how to apply it to solve problems in mathematics and other sciences and economics. Each of the chapters concludes with groups of exercises and problems, many of them with detailed solutions while others with hints or final answers. More advanced topics, such as Morse's lemma, Brouwer's fixed point theorem, Picard's theorem and the Weierstrass approximation theorem are discussed in stared sections.
Author | : Lawrence M Graves |
Publisher | : Courier Corporation |
Total Pages | : 361 |
Release | : 2012-01-27 |
Genre | : Mathematics |
ISBN | : 0486158136 |
This balanced introduction covers all fundamentals, from the real number system and point sets to set theory and metric spaces. Useful references to the literature conclude each chapter. 1956 edition.
Author | : Serge Lang |
Publisher | : Springer Science & Business Media |
Total Pages | : 624 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 1461210682 |
This new, revised edition covers all of the basic topics in calculus of several variables, including vectors, curves, functions of several variables, gradient, tangent plane, maxima and minima, potential functions, curve integrals, Green’s theorem, multiple integrals, surface integrals, Stokes’ theorem, and the inverse mapping theorem and its consequences. It includes many completely worked-out problems.
Author | : C. H. Edwards |
Publisher | : Academic Press |
Total Pages | : 470 |
Release | : 2014-05-10 |
Genre | : Mathematics |
ISBN | : 1483268055 |
Advanced Calculus of Several Variables provides a conceptual treatment of multivariable calculus. This book emphasizes the interplay of geometry, analysis through linear algebra, and approximation of nonlinear mappings by linear ones. The classical applications and computational methods that are responsible for much of the interest and importance of calculus are also considered. This text is organized into six chapters. Chapter I deals with linear algebra and geometry of Euclidean n-space Rn. The multivariable differential calculus is treated in Chapters II and III, while multivariable integral calculus is covered in Chapters IV and V. The last chapter is devoted to venerable problems of the calculus of variations. This publication is intended for students who have completed a standard introductory calculus sequence.
Author | : Wendell Fleming |
Publisher | : Springer Science & Business Media |
Total Pages | : 420 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 1468494619 |
This new edition, like the first, presents a thorough introduction to differential and integral calculus, including the integration of differential forms on manifolds. However, an additional chapter on elementary topology makes the book more complete as an advanced calculus text, and sections have been added introducing physical applications in thermodynamics, fluid dynamics, and classical rigid body mechanics.
Author | : Michael E. Taylor |
Publisher | : American Mathematical Soc. |
Total Pages | : 445 |
Release | : 2020-07-27 |
Genre | : Education |
ISBN | : 1470456699 |
This text was produced for the second part of a two-part sequence on advanced calculus, whose aim is to provide a firm logical foundation for analysis. The first part treats analysis in one variable, and the text at hand treats analysis in several variables. After a review of topics from one-variable analysis and linear algebra, the text treats in succession multivariable differential calculus, including systems of differential equations, and multivariable integral calculus. It builds on this to develop calculus on surfaces in Euclidean space and also on manifolds. It introduces differential forms and establishes a general Stokes formula. It describes various applications of Stokes formula, from harmonic functions to degree theory. The text then studies the differential geometry of surfaces, including geodesics and curvature, and makes contact with degree theory, via the Gauss–Bonnet theorem. The text also takes up Fourier analysis, and bridges this with results on surfaces, via Fourier analysis on spheres and on compact matrix groups.
Author | : John P. D'Angelo |
Publisher | : CRC Press |
Total Pages | : 350 |
Release | : 1993-01-06 |
Genre | : Mathematics |
ISBN | : 9780849382727 |
Several Complex Variables and the Geometry of Real Hypersurfaces covers a wide range of information from basic facts about holomorphic functions of several complex variables through deep results such as subelliptic estimates for the ?-Neumann problem on pseudoconvex domains with a real analytic boundary. The book focuses on describing the geometry of a real hypersurface in a complex vector space by understanding its relationship with ambient complex analytic varieties. You will learn how to decide whether a real hypersurface contains complex varieties, how closely such varieties can contact the hypersurface, and why it's important. The book concludes with two sets of problems: routine problems and difficult problems (many of which are unsolved). Principal prerequisites for using this book include a thorough understanding of advanced calculus and standard knowledge of complex analysis in one variable. Several Complex Variables and the Geometry of Real Hypersurfaces will be a useful text for advanced graduate students and professionals working in complex analysis.
Author | : Miklós Laczkovich |
Publisher | : Springer |
Total Pages | : 396 |
Release | : 2017-12-14 |
Genre | : Mathematics |
ISBN | : 149397369X |
This book develops the theory of multivariable analysis, building on the single variable foundations established in the companion volume, Real Analysis: Foundations and Functions of One Variable. Together, these volumes form the first English edition of the popular Hungarian original, Valós Analízis I & II, based on courses taught by the authors at Eötvös Loránd University, Hungary, for more than 30 years. Numerous exercises are included throughout, offering ample opportunities to master topics by progressing from routine to difficult problems. Hints or solutions to many of the more challenging exercises make this book ideal for independent study, or further reading. Intended as a sequel to a course in single variable analysis, this book builds upon and expands these ideas into higher dimensions. The modular organization makes this text adaptable for either a semester or year-long introductory course. Topics include: differentiation and integration of functions of several variables; infinite numerical series; sequences and series of functions; and applications to other areas of mathematics. Many historical notes are given and there is an emphasis on conceptual understanding and context, be it within mathematics itself or more broadly in applications, such as physics. By developing the student’s intuition throughout, many definitions and results become motivated by insights from their context.