Elements of Logic via Numbers and Sets

Elements of Logic via Numbers and Sets
Author: D.L. Johnson
Publisher: Springer Science & Business Media
Total Pages: 179
Release: 2012-12-06
Genre: Mathematics
ISBN: 1447106032

In mathematics we are interested in why a particular formula is true. Intuition and statistical evidence are insufficient, so we need to construct a formal logical proof. The purpose of this book is to describe why such proofs are important, what they are made of, how to recognize valid ones, how to distinguish different kinds, and how to construct them. This book is written for 1st year students with no previous experience of formulating proofs. Dave Johnson has drawn from his considerable experience to provide a text that concentrates on the most important elements of the subject using clear, simple explanations that require no background knowledge of logic. It gives many useful examples and problems, many with fully-worked solutions at the end of the book. In addition to a comprehensive index, there is also a useful `Dramatis Personae` an index to the many symbols introduced in the text, most of which will be new to students and which will be used throughout their degree programme.

Logic, Sets, and Numbers

Logic, Sets, and Numbers
Author: Frank Blume
Publisher: Createspace Independent Publishing Platform
Total Pages: 240
Release: 2017-07-19
Genre:
ISBN: 9781973779360

Logic, Sets, and Numbers is a brief introduction to abstract mathematics that is meant to familiarize the reader with the formal and conceptual rigor that higher-level undergraduate and graduate textbooks commonly employ. Beginning with formal logic and a fairly extensive discussion of concise formulations of mathematical statements, the text moves on to cover general patterns of proofs, elementary set theory, mathematical induction, cardinality, as well as, in the final chapter, the creation of the various number systems from the integers up to the complex numbers. On the whole, the book's intent is not only to reveal the nature of mathematical abstraction, but also its inherent beauty and purity.

Set Theory and Logic

Set Theory and Logic
Author: Robert R. Stoll
Publisher: Courier Corporation
Total Pages: 516
Release: 2012-05-23
Genre: Mathematics
ISBN: 0486139646

Explores sets and relations, the natural number sequence and its generalization, extension of natural numbers to real numbers, logic, informal axiomatic mathematics, Boolean algebras, informal axiomatic set theory, several algebraic theories, and 1st-order theories.

Mathematical Logic

Mathematical Logic
Author: Roman Kossak
Publisher: Springer
Total Pages: 188
Release: 2018-10-03
Genre: Mathematics
ISBN: 3319972987

This book, presented in two parts, offers a slow introduction to mathematical logic, and several basic concepts of model theory, such as first-order definability, types, symmetries, and elementary extensions. Its first part, Logic Sets, and Numbers, shows how mathematical logic is used to develop the number structures of classical mathematics. The exposition does not assume any prerequisites; it is rigorous, but as informal as possible. All necessary concepts are introduced exactly as they would be in a course in mathematical logic; but are accompanied by more extensive introductory remarks and examples to motivate formal developments. The second part, Relations, Structures, Geometry, introduces several basic concepts of model theory, such as first-order definability, types, symmetries, and elementary extensions, and shows how they are used to study and classify mathematical structures. Although more advanced, this second part is accessible to the reader who is either already familiar with basic mathematical logic, or has carefully read the first part of the book. Classical developments in model theory, including the Compactness Theorem and its uses, are discussed. Other topics include tameness, minimality, and order minimality of structures. The book can be used as an introduction to model theory, but unlike standard texts, it does not require familiarity with abstract algebra. This book will also be of interest to mathematicians who know the technical aspects of the subject, but are not familiar with its history and philosophical background.

A First Course in Discrete Mathematics

A First Course in Discrete Mathematics
Author: Brian Lian
Publisher: Springer Science & Business Media
Total Pages: 212
Release: 2000-10-27
Genre: Mathematics
ISBN: 9781852332365

Drawing on many years'experience of teaching discrete mathem atics to students of all levels, Anderson introduces such as pects as enumeration, graph theory and configurations or arr angements. Starting with an introduction to counting and rel ated problems, he moves on to the basic ideas of graph theor y with particular emphasis on trees and planar graphs. He de scribes the inclusion-exclusion principle followed by partit ions of sets which in turn leads to a study of Stirling and Bell numbers. Then follows a treatment of Hamiltonian cycles, Eulerian circuits in graphs, and Latin squares as well as proof of Hall's theorem. He concludes with the constructions of schedules and a brief introduction to block designs. Each chapter is backed by a number of examples, with straightforw ard applications of ideas and more challenging problems.

Sets, Logic and Categories

Sets, Logic and Categories
Author: Peter J. Cameron
Publisher: Springer Science & Business Media
Total Pages: 191
Release: 2012-12-06
Genre: Mathematics
ISBN: 1447105893

Set theory, logic and category theory lie at the foundations of mathematics, and have a dramatic effect on the mathematics that we do, through the Axiom of Choice, Gödel's Theorem, and the Skolem Paradox. But they are also rich mathematical theories in their own right, contributing techniques and results to working mathematicians such as the Compactness Theorem and module categories. The book is aimed at those who know some mathematics and want to know more about its building blocks. Set theory is first treated naively an axiomatic treatment is given after the basics of first-order logic have been introduced. The discussion is su pported by a wide range of exercises. The final chapter touches on philosophical issues. The book is supported by a World Wibe Web site containing a variety of supplementary material.

Logic, Sets, and Recursion

Logic, Sets, and Recursion
Author: Robert L. Causey
Publisher: Jones & Bartlett Learning
Total Pages: 536
Release: 2006
Genre: Computers
ISBN: 9780763737849

The new Second Edition incorporates a wealth of exercise sets, allowing students to test themselves and review important topics discussed throughout the text."--Jacket.

An Introduction to Mathematical Reasoning

An Introduction to Mathematical Reasoning
Author: Peter J. Eccles
Publisher: Cambridge University Press
Total Pages: 364
Release: 2013-06-26
Genre: Mathematics
ISBN: 1139632566

This book eases students into the rigors of university mathematics. The emphasis is on understanding and constructing proofs and writing clear mathematics. The author achieves this by exploring set theory, combinatorics, and number theory, topics that include many fundamental ideas and may not be a part of a young mathematician's toolkit. This material illustrates how familiar ideas can be formulated rigorously, provides examples demonstrating a wide range of basic methods of proof, and includes some of the all-time-great classic proofs. The book presents mathematics as a continually developing subject. Material meeting the needs of readers from a wide range of backgrounds is included. The over 250 problems include questions to interest and challenge the most able student but also plenty of routine exercises to help familiarize the reader with the basic ideas.

Numbers, Sets and Axioms

Numbers, Sets and Axioms
Author: A. G. Hamilton
Publisher: Cambridge University Press
Total Pages: 272
Release: 1982
Genre: Mathematics
ISBN: 9780521287616

Following the success of Logic for Mathematicians, Dr Hamilton has written a text for mathematicians and students of mathematics that contains a description and discussion of the fundamental conceptual and formal apparatus upon which modern pure mathematics relies. The author's intention is to remove some of the mystery that surrounds the foundations of mathematics. He emphasises the intuitive basis of mathematics; the basic notions are numbers and sets and they are considered both informally and formally. The role of axiom systems is part of the discussion but their limitations are pointed out. Formal set theory has its place in the book but Dr Hamilton recognises that this is a part of mathematics and not the basis on which it rests. Throughout, the abstract ideas are liberally illustrated by examples so this account should be well-suited, both specifically as a course text and, more broadly, as background reading. The reader is presumed to have some mathematical experience but no knowledge of mathematical logic is required.

Set Theory And Foundations Of Mathematics: An Introduction To Mathematical Logic - Volume I: Set Theory

Set Theory And Foundations Of Mathematics: An Introduction To Mathematical Logic - Volume I: Set Theory
Author: Douglas Cenzer
Publisher: World Scientific
Total Pages: 222
Release: 2020-04-04
Genre: Mathematics
ISBN: 9811201943

This book provides an introduction to axiomatic set theory and descriptive set theory. It is written for the upper level undergraduate or beginning graduate students to help them prepare for advanced study in set theory and mathematical logic as well as other areas of mathematics, such as analysis, topology, and algebra.The book is designed as a flexible and accessible text for a one-semester introductory course in set theory, where the existing alternatives may be more demanding or specialized. Readers will learn the universally accepted basis of the field, with several popular topics added as an option. Pointers to more advanced study are scattered throughout the text.