Sets And Computations
Download Sets And Computations full books in PDF, epub, and Kindle. Read online free Sets And Computations ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Sy-david Friedman |
Publisher | : World Scientific |
Total Pages | : 280 |
Release | : 2017-06-22 |
Genre | : Mathematics |
ISBN | : 9813223537 |
The contents in this volume are based on the program Sets and Computations that was held at the Institute for Mathematical Sciences, National University of Singapore from 30 March until 30 April 2015. This special collection reports on important and recent interactions between the fields of Set Theory and Computation Theory. This includes the new research areas of computational complexity in set theory, randomness beyond the hyperarithmetic, powerful extensions of Goodstein's theorem and the capturing of large fragments of set theory via elementary-recursive structures.Further chapters are concerned with central topics within Set Theory, including cardinal characteristics, Fraïssé limits, the set-generic multiverse and the study of ideals. Also Computation Theory, which includes computable group theory and measure-theoretic aspects of Hilbert's Tenth Problem. A volume of this broad scope will appeal to a wide spectrum of researchers in mathematical logic.
Author | : Domenico Cantone |
Publisher | : Springer Science & Business Media |
Total Pages | : 440 |
Release | : 2001-06-26 |
Genre | : Computers |
ISBN | : 9780387951973 |
"Set Theory for Computing" provides a comprehensive account of set-oriented symbolic manipulation methods suitable for automated reasoning. Its main objective is twofold: 1) to provide a flexible formalization for a variety of set languages, and 2) to clarify the semantics of set constructs firmly established in modern specification languages and in the programming practice. Topics include: semantic unification, decision algorithms, modal logics, declarative programming, tableau-based proof techniques, and theory-based theorem proving. The style of presentation is self-contained, rigorous and accurate. Some familiarity with symbolic logic is helpful but not a requirement. This book is a useful resource for all advanced students, professionals, and researchers in computing sciences, artificial intelligence, automated reasoning, logic, and computational mathematics. It will serve to complement their intuitive understanding of set concepts with the ability to master them by symbolic and logically based algorithmic methods and deductive techniques.
Author | : Richard Zach |
Publisher | : |
Total Pages | : 418 |
Release | : 2021-07-13 |
Genre | : |
ISBN | : |
A textbook on the semantics, proof theory, and metatheory of first-order logic. It covers naive set theory, first-order logic, sequent calculus and natural deduction, the completeness, compactness, and Löwenheim-Skolem theorems, Turing machines, and the undecidability of the halting problem and of first-order logic. It is based on the Open Logic project, and available for free download at slc.openlogicproject.org.
Author | : Jacob T. Schwartz |
Publisher | : Springer Science & Business Media |
Total Pages | : 426 |
Release | : 2011-07-16 |
Genre | : Computers |
ISBN | : 0857298089 |
This must-read text presents the pioneering work of the late Professor Jacob (Jack) T. Schwartz on computational logic and set theory and its application to proof verification techniques, culminating in the ÆtnaNova system, a prototype computer program designed to verify the correctness of mathematical proofs presented in the language of set theory. Topics and features: describes in depth how a specific first-order theory can be exploited to model and carry out reasoning in branches of computer science and mathematics; presents an unique system for automated proof verification in large-scale software systems; integrates important proof-engineering issues, reflecting the goals of large-scale verifiers; includes an appendix showing formalized proofs of ordinals, of various properties of the transitive closure operation, of finite and transfinite induction principles, and of Zorn’s lemma.
Author | : David Makinson |
Publisher | : Springer Science & Business Media |
Total Pages | : 302 |
Release | : 2012-02-27 |
Genre | : Computers |
ISBN | : 1447125002 |
This easy-to-follow textbook introduces the mathematical language, knowledge and problem-solving skills that undergraduates need to study computing. The language is in part qualitative, with concepts such as set, relation, function and recursion/induction; but it is also partly quantitative, with principles of counting and finite probability. Entwined with both are the fundamental notions of logic and their use for representation and proof. Features: teaches finite math as a language for thinking, as much as knowledge and skills to be acquired; uses an intuitive approach with a focus on examples for all general concepts; brings out the interplay between the qualitative and the quantitative in all areas covered, particularly in the treatment of recursion and induction; balances carefully the abstract and concrete, principles and proofs, specific facts and general perspectives; includes highlight boxes that raise common queries and clear confusions; provides numerous exercises, with selected solutions.
Author | : Avi Wigderson |
Publisher | : Princeton University Press |
Total Pages | : 434 |
Release | : 2019-10-29 |
Genre | : Computers |
ISBN | : 0691189137 |
From the winner of the Turing Award and the Abel Prize, an introduction to computational complexity theory, its connections and interactions with mathematics, and its central role in the natural and social sciences, technology, and philosophy Mathematics and Computation provides a broad, conceptual overview of computational complexity theory—the mathematical study of efficient computation. With important practical applications to computer science and industry, computational complexity theory has evolved into a highly interdisciplinary field, with strong links to most mathematical areas and to a growing number of scientific endeavors. Avi Wigderson takes a sweeping survey of complexity theory, emphasizing the field’s insights and challenges. He explains the ideas and motivations leading to key models, notions, and results. In particular, he looks at algorithms and complexity, computations and proofs, randomness and interaction, quantum and arithmetic computation, and cryptography and learning, all as parts of a cohesive whole with numerous cross-influences. Wigderson illustrates the immense breadth of the field, its beauty and richness, and its diverse and growing interactions with other areas of mathematics. He ends with a comprehensive look at the theory of computation, its methodology and aspirations, and the unique and fundamental ways in which it has shaped and will further shape science, technology, and society. For further reading, an extensive bibliography is provided for all topics covered. Mathematics and Computation is useful for undergraduate and graduate students in mathematics, computer science, and related fields, as well as researchers and teachers in these fields. Many parts require little background, and serve as an invitation to newcomers seeking an introduction to the theory of computation. Comprehensive coverage of computational complexity theory, and beyond High-level, intuitive exposition, which brings conceptual clarity to this central and dynamic scientific discipline Historical accounts of the evolution and motivations of central concepts and models A broad view of the theory of computation's influence on science, technology, and society Extensive bibliography
Author | : Mark Braverman |
Publisher | : Springer Science & Business Media |
Total Pages | : 158 |
Release | : 2009-02-08 |
Genre | : Computers |
ISBN | : 3540685472 |
Among all computer-generated mathematical images, Julia sets of rational maps occupy one of the most prominent positions. Their beauty and complexity can be fascinating. They also hold a deep mathematical content. Computational hardness of Julia sets is the main subject of this book. By definition, a computable set in the plane can be visualized on a computer screen with an arbitrarily high magnification. There are countless programs to draw Julia sets. Yet, as the authors have discovered, it is possible to constructively produce examples of quadratic polynomials, whose Julia sets are not computable. This result is striking - it says that while a dynamical system can be described numerically with an arbitrary precision, the picture of the dynamics cannot be visualized. The book summarizes the present knowledge (most of it from the authors' own work) about the computational properties of Julia sets in a self-contained way. It is accessible to experts and students with interest in theoretical computer science or dynamical systems.
Author | : Charles C Pinter |
Publisher | : Courier Corporation |
Total Pages | : 259 |
Release | : 2014-07-23 |
Genre | : Mathematics |
ISBN | : 0486497089 |
"This accessible approach to set theory for upper-level undergraduates poses rigorous but simple arguments. Each definition is accompanied by commentary that motivates and explains new concepts. A historical introduction is followed by discussions of classes and sets, functions, natural and cardinal numbers, the arithmetic of ordinal numbers, and related topics. 1971 edition with new material by the author"--
Author | : Eva Perlt |
Publisher | : Springer Nature |
Total Pages | : 255 |
Release | : 2021-05-06 |
Genre | : Science |
ISBN | : 303067262X |
This book addresses the construction and application of the major types of basis sets for computational chemistry calculations. In addition to a general introduction, it includes mathematical basics and a discussion of errors arising from incomplete or inappropriate basis sets. The different chapters introduce local orbitals and orbital localization as well as Slater-type orbitals and review basis sets for special applications, such as those for correlated methods, solid-state calculations, heavy atoms and time-dependent adaptable Gaussian bases for quantum dynamics simulations. This detailed review of the purpose of basis sets, their design, applications, possible problems and available solutions provides graduate students and beginning researchers with information not easily obtained from the available textbooks and offers valuable supporting material for any quantum chemistry or computational chemistry course at the graduate and/or undergraduate level. This book is also useful as a guide for researchers who are new to computational chemistry but are willing to extend their research tools by applying such methods.
Author | : John Rowlett |
Publisher | : |
Total Pages | : 258 |
Release | : 1842 |
Genre | : Interest |
ISBN | : |