Set Theory And The Continuum Problem
Download Set Theory And The Continuum Problem full books in PDF, epub, and Kindle. Read online free Set Theory And The Continuum Problem ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Raymond M. Smullyan |
Publisher | : |
Total Pages | : 0 |
Release | : 2010 |
Genre | : Continuum hypothesis |
ISBN | : 9780486474847 |
A lucid, elegant, and complete survey of set theory, this three-part treatment explores axiomatic set theory, the consistency of the continuum hypothesis, and forcing and independence results. 1996 edition.
Author | : Paul J. Cohen |
Publisher | : Courier Corporation |
Total Pages | : 196 |
Release | : 2008-12-09 |
Genre | : Mathematics |
ISBN | : 0486469212 |
This exploration of a notorious mathematical problem is the work of the man who discovered the solution. Written by an award-winning professor at Stanford University, it employs intuitive explanations as well as detailed mathematical proofs in a self-contained treatment. This unique text and reference is suitable for students and professionals. 1966 edition. Copyright renewed 1994.
Author | : Yiannis Moschovakis |
Publisher | : Springer Science & Business Media |
Total Pages | : 280 |
Release | : 2013-04-17 |
Genre | : Mathematics |
ISBN | : 1475741537 |
What this book is about. The theory of sets is a vibrant, exciting math ematical theory, with its own basic notions, fundamental results and deep open problems, and with significant applications to other mathematical theories. At the same time, axiomatic set theory is often viewed as a foun dation ofmathematics: it is alleged that all mathematical objects are sets, and their properties can be derived from the relatively few and elegant axioms about sets. Nothing so simple-minded can be quite true, but there is little doubt that in standard, current mathematical practice, "making a notion precise" is essentially synonymous with "defining it in set theory. " Set theory is the official language of mathematics, just as mathematics is the official language of science. Like most authors of elementary, introductory books about sets, I have tried to do justice to both aspects of the subject. From straight set theory, these Notes cover the basic facts about "ab stract sets," including the Axiom of Choice, transfinite recursion, and car dinal and ordinal numbers. Somewhat less common is the inclusion of a chapter on "pointsets" which focuses on results of interest to analysts and introduces the reader to the Continuum Problem, central to set theory from the very beginning.
Author | : Charles A. Weibel |
Publisher | : Cambridge University Press |
Total Pages | : 470 |
Release | : 1995-10-27 |
Genre | : Mathematics |
ISBN | : 113964307X |
The landscape of homological algebra has evolved over the last half-century into a fundamental tool for the working mathematician. This book provides a unified account of homological algebra as it exists today. The historical connection with topology, regular local rings, and semi-simple Lie algebras are also described. This book is suitable for second or third year graduate students. The first half of the book takes as its subject the canonical topics in homological algebra: derived functors, Tor and Ext, projective dimensions and spectral sequences. Homology of group and Lie algebras illustrate these topics. Intermingled are less canonical topics, such as the derived inverse limit functor lim1, local cohomology, Galois cohomology, and affine Lie algebras. The last part of the book covers less traditional topics that are a vital part of the modern homological toolkit: simplicial methods, Hochschild and cyclic homology, derived categories and total derived functors. By making these tools more accessible, the book helps to break down the technological barrier between experts and casual users of homological algebra.
Author | : Peter Komjath |
Publisher | : Springer Science & Business Media |
Total Pages | : 492 |
Release | : 2006-11-22 |
Genre | : Mathematics |
ISBN | : 0387362193 |
This volume contains a variety of problems from classical set theory and represents the first comprehensive collection of such problems. Many of these problems are also related to other fields of mathematics, including algebra, combinatorics, topology and real analysis. Rather than using drill exercises, most problems are challenging and require work, wit, and inspiration. They vary in difficulty, and are organized in such a way that earlier problems help in the solution of later ones. For many of the problems, the authors also trace the history of the problems and then provide proper reference at the end of the solution.
Author | : Michael D. Potter |
Publisher | : Clarendon Press |
Total Pages | : 345 |
Release | : 2004 |
Genre | : Mathematics |
ISBN | : 9780199269730 |
A wonderful new book ... Potter has written the best philosophical introduction to set theory on the market - Timothy Bays, Notre Dame Philosophical Reviews.
Author | : D.C. Goldrei |
Publisher | : Routledge |
Total Pages | : 300 |
Release | : 2017-09-06 |
Genre | : Mathematics |
ISBN | : 1351460609 |
Designed for undergraduate students of set theory, Classic Set Theory presents a modern perspective of the classic work of Georg Cantor and Richard Dedekin and their immediate successors. This includes:The definition of the real numbers in terms of rational numbers and ultimately in terms of natural numbersDefining natural numbers in terms of setsThe potential paradoxes in set theoryThe Zermelo-Fraenkel axioms for set theoryThe axiom of choiceThe arithmetic of ordered setsCantor's two sorts of transfinite number - cardinals and ordinals - and the arithmetic of these.The book is designed for students studying on their own, without access to lecturers and other reading, along the lines of the internationally renowned courses produced by the Open University. There are thus a large number of exercises within the main body of the text designed to help students engage with the subject, many of which have full teaching solutions. In addition, there are a number of exercises without answers so students studying under the guidance of a tutor may be assessed.Classic Set Theory gives students sufficient grounding in a rigorous approach to the revolutionary results of set theory as well as pleasure in being able to tackle significant problems that arise from the theory.
Author | : Charles C Pinter |
Publisher | : Courier Corporation |
Total Pages | : 259 |
Release | : 2014-07-23 |
Genre | : Mathematics |
ISBN | : 0486497089 |
"This accessible approach to set theory for upper-level undergraduates poses rigorous but simple arguments. Each definition is accompanied by commentary that motivates and explains new concepts. A historical introduction is followed by discussions of classes and sets, functions, natural and cardinal numbers, the arithmetic of ordinal numbers, and related topics. 1971 edition with new material by the author"--
Author | : Nik Weaver |
Publisher | : World Scientific |
Total Pages | : 153 |
Release | : 2014-01-24 |
Genre | : Mathematics |
ISBN | : 9814566020 |
Ever since Paul Cohen's spectacular use of the forcing concept to prove the independence of the continuum hypothesis from the standard axioms of set theory, forcing has been seen by the general mathematical community as a subject of great intrinsic interest but one that is technically so forbidding that it is only accessible to specialists. In the past decade, a series of remarkable solutions to long-standing problems in C*-algebra using set-theoretic methods, many achieved by the author and his collaborators, have generated new interest in this subject. This is the first book aimed at explaining forcing to general mathematicians. It simultaneously makes the subject broadly accessible by explaining it in a clear, simple manner, and surveys advanced applications of set theory to mainstream topics.
Author | : G.H. Moore |
Publisher | : Springer Science & Business Media |
Total Pages | : 425 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 1461394783 |
This book grew out of my interest in what is common to three disciplines: mathematics, philosophy, and history. The origins of Zermelo's Axiom of Choice, as well as the controversy that it engendered, certainly lie in that intersection. Since the time of Aristotle, mathematics has been concerned alternately with its assumptions and with the objects, such as number and space, about which those assumptions were made. In the historical context of Zermelo's Axiom, I have explored both the vagaries and the fertility of this alternating concern. Though Zermelo's research has provided the focus for this book, much of it is devoted to the problems from which his work originated and to the later developments which, directly or indirectly, he inspired. A few remarks about format are in order. In this book a publication is indicated by a date after a name; so Hilbert 1926, 178 refers to page 178 of an article written by Hilbert, published in 1926, and listed in the bibliography.