Sequences Of Convergence For Series
Download Sequences Of Convergence For Series full books in PDF, epub, and Kindle. Read online free Sequences Of Convergence For Series ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Daniel D. Bonar |
Publisher | : American Mathematical Soc. |
Total Pages | : 278 |
Release | : 2018-12-12 |
Genre | : Mathematics |
ISBN | : 1470447827 |
This is a widely accessible introductory treatment of infinite series of real numbers, bringing the reader from basic definitions and tests to advanced results. An up-to-date presentation is given, making infinite series accessible, interesting, and useful to a wide audience, including students, teachers, and researchers. Included are elementary and advanced tests for convergence or divergence, the harmonic series, the alternating harmonic series, and closely related results. One chapter offers 107 concise, crisp, surprising results about infinite series. Another gives problems on infinite series, and solutions, which have appeared on the annual William Lowell Putnam Mathematical Competition. The lighter side of infinite series is treated in the concluding chapter where three puzzles, eighteen visuals, and several fallacious proofs are made available. Three appendices provide a listing of true or false statements, answers to why the harmonic series is so named, and an extensive list of published works on infinite series.
Author | : Edwin Herman |
Publisher | : |
Total Pages | : 0 |
Release | : 2016-03-30 |
Genre | : Calculus |
ISBN | : 9781947172838 |
Calculus is designed for the typical two- or three-semester general calculus course, incorporating innovative features to enhance student learning. The book guides students through the core concepts of calculus and helps them understand how those concepts apply to their lives and the world around them. Due to the comprehensive nature of the material, we are offering the book in three volumes for flexibility and efficiency. Volume 3 covers parametric equations and polar coordinates, vectors, functions of several variables, multiple integration, and second-order differential equations.
Author | : S. B. Steckin |
Publisher | : American Mathematical Soc. |
Total Pages | : 104 |
Release | : 1967 |
Genre | : Mathematics |
ISBN | : 9780821818862 |
Author | : M. Mursaleen |
Publisher | : Springer Science & Business Media |
Total Pages | : 174 |
Release | : 2013-10-17 |
Genre | : Mathematics |
ISBN | : 8132216113 |
This book exclusively deals with the study of almost convergence and statistical convergence of double sequences. The notion of “almost convergence” is perhaps the most useful notion in order to obtain a weak limit of a bounded non-convergent sequence. There is another notion of convergence known as the “statistical convergence”, introduced by H. Fast, which is an extension of the usual concept of sequential limits. This concept arises as an example of “convergence in density” which is also studied as a summability method. Even unbounded sequences can be dealt with by using this method. The book also discusses the applications of these non-matrix methods in approximation theory. Written in a self-contained style, the book discusses in detail the methods of almost convergence and statistical convergence for double sequences along with applications and suitable examples. The last chapter is devoted to the study convergence of double series and describes various convergence tests analogous to those of single sequences. In addition to applications in approximation theory, the results are expected to find application in many other areas of pure and applied mathematics such as mathematical analysis, probability, fixed point theory and statistics.
Author | : Charles H.C. Little |
Publisher | : Springer |
Total Pages | : 483 |
Release | : 2015-05-28 |
Genre | : Mathematics |
ISBN | : 1493926519 |
This text gives a rigorous treatment of the foundations of calculus. In contrast to more traditional approaches, infinite sequences and series are placed at the forefront. The approach taken has not only the merit of simplicity, but students are well placed to understand and appreciate more sophisticated concepts in advanced mathematics. The authors mitigate potential difficulties in mastering the material by motivating definitions, results and proofs. Simple examples are provided to illustrate new material and exercises are included at the end of most sections. Noteworthy topics include: an extensive discussion of convergence tests for infinite series, Wallis’s formula and Stirling’s formula, proofs of the irrationality of π and e and a treatment of Newton’s method as a special instance of finding fixed points of iterated functions.
Author | : Saminathan Ponnusamy |
Publisher | : Springer Science & Business Media |
Total Pages | : 575 |
Release | : 2011-12-16 |
Genre | : Mathematics |
ISBN | : 0817682910 |
Mathematical analysis is fundamental to the undergraduate curriculum not only because it is the stepping stone for the study of advanced analysis, but also because of its applications to other branches of mathematics, physics, and engineering at both the undergraduate and graduate levels. This self-contained textbook consists of eleven chapters, which are further divided into sections and subsections. Each section includes a careful selection of special topics covered that will serve to illustrate the scope and power of various methods in real analysis. The exposition is developed with thorough explanations, motivating examples, exercises, and illustrations conveying geometric intuition in a pleasant and informal style to help readers grasp difficult concepts. Foundations of Mathematical Analysis is intended for undergraduate students and beginning graduate students interested in a fundamental introduction to the subject. It may be used in the classroom or as a self-study guide without any required prerequisites.
Author | : Stephen Abbott |
Publisher | : Springer Science & Business Media |
Total Pages | : 269 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 0387215069 |
This elementary presentation exposes readers to both the process of rigor and the rewards inherent in taking an axiomatic approach to the study of functions of a real variable. The aim is to challenge and improve mathematical intuition rather than to verify it. The philosophy of this book is to focus attention on questions which give analysis its inherent fascination. Each chapter begins with the discussion of some motivating examples and concludes with a series of questions.
Author | : Teodora-Liliana Radulescu |
Publisher | : Springer Science & Business Media |
Total Pages | : 462 |
Release | : 2009-06-12 |
Genre | : Mathematics |
ISBN | : 0387773797 |
Problems in Real Analysis: Advanced Calculus on the Real Axis features a comprehensive collection of challenging problems in mathematical analysis that aim to promote creative, non-standard techniques for solving problems. This self-contained text offers a host of new mathematical tools and strategies which develop a connection between analysis and other mathematical disciplines, such as physics and engineering. A broad view of mathematics is presented throughout; the text is excellent for the classroom or self-study. It is intended for undergraduate and graduate students in mathematics, as well as for researchers engaged in the interplay between applied analysis, mathematical physics, and numerical analysis.
Author | : Konrad Knopp |
Publisher | : Courier Corporation |
Total Pages | : 212 |
Release | : 2012-09-14 |
Genre | : Mathematics |
ISBN | : 0486152049 |
Careful presentation of fundamentals of the theory by one of the finest modern expositors of higher mathematics. Covers functions of real and complex variables, arbitrary and null sequences, convergence and divergence, Cauchy's limit theorem, more.
Author | : Andrei Bourchtein |
Publisher | : John Wiley & Sons |
Total Pages | : 270 |
Release | : 2017-02-13 |
Genre | : Mathematics |
ISBN | : 1119303389 |
A comprehensive and thorough analysis of concepts and results on uniform convergence Counterexamples on Uniform Convergence: Sequences, Series, Functions, and Integrals presents counterexamples to false statements typically found within the study of mathematical analysis and calculus, all of which are related to uniform convergence. The book includes the convergence of sequences, series and families of functions, and proper and improper integrals depending on a parameter. The exposition is restricted to the main definitions and theorems in order to explore different versions (wrong and correct) of the fundamental concepts and results. The goal of the book is threefold. First, the authors provide a brief survey and discussion of principal results of the theory of uniform convergence in real analysis. Second, the book aims to help readers master the presented concepts and theorems, which are traditionally challenging and are sources of misunderstanding and confusion. Finally, this book illustrates how important mathematical tools such as counterexamples can be used in different situations. The features of the book include: An overview of important concepts and theorems on uniform convergence Well-organized coverage of the majority of the topics on uniform convergence studied in analysis courses An original approach to the analysis of important results on uniform convergence based\ on counterexamples Additional exercises at varying levels of complexity for each topic covered in the book A supplementary Instructor’s Solutions Manual containing complete solutions to all exercises, which is available via a companion website Counterexamples on Uniform Convergence: Sequences, Series, Functions, and Integrals is an appropriate reference and/or supplementary reading for upper-undergraduate and graduate-level courses in mathematical analysis and advanced calculus for students majoring in mathematics, engineering, and other sciences. The book is also a valuable resource for instructors teaching mathematical analysis and calculus. ANDREI BOURCHTEIN, PhD, is Professor in the Department of Mathematics at Pelotas State University in Brazil. The author of more than 100 referred articles and five books, his research interests include numerical analysis, computational fluid dynamics, numerical weather prediction, and real analysis. Dr. Andrei Bourchtein received his PhD in Mathematics and Physics from the Hydrometeorological Center of Russia. LUDMILA BOURCHTEIN, PhD, is Senior Research Scientist at the Institute of Physics and Mathematics at Pelotas State University in Brazil. The author of more than 80 referred articles and three books, her research interests include real and complex analysis, conformal mappings, and numerical analysis. Dr. Ludmila Bourchtein received her PhD in Mathematics from Saint Petersburg State University in Russia.