Semimartingales

Semimartingales
Author: Michel Métivier
Publisher: Walter de Gruyter
Total Pages: 305
Release: 2011-06-01
Genre: Mathematics
ISBN: 3110845563

The series is devoted to the publication of monographs and high-level textbooks in mathematics, mathematical methods and their applications. Apart from covering important areas of current interest, a major aim is to make topics of an interdisciplinary nature accessible to the non-specialist. The works in this series are addressed to advanced students and researchers in mathematics and theoretical physics. In addition, it can serve as a guide for lectures and seminars on a graduate level. The series de Gruyter Studies in Mathematics was founded ca. 30 years ago by the late Professor Heinz Bauer and Professor Peter Gabriel with the aim to establish a series of monographs and textbooks of high standard, written by scholars with an international reputation presenting current fields of research in pure and applied mathematics. While the editorial board of the Studies has changed with the years, the aspirations of the Studies are unchanged. In times of rapid growth of mathematical knowledge carefully written monographs and textbooks written by experts are needed more than ever, not least to pave the way for the next generation of mathematicians. In this sense the editorial board and the publisher of the Studies are devoted to continue the Studies as a service to the mathematical community. Please submit any book proposals to Niels Jacob.

Semimartingale Theory and Stochastic Calculus

Semimartingale Theory and Stochastic Calculus
Author: Sheng-Wu He
Publisher: Routledge
Total Pages: 575
Release: 2019-07-09
Genre: Mathematics
ISBN: 1351416952

Semimartingale Theory and Stochastic Calculus presents a systematic and detailed account of the general theory of stochastic processes, the semimartingale theory, and related stochastic calculus. The book emphasizes stochastic integration for semimartingales, characteristics of semimartingales, predictable representation properties and weak convergence of semimartingales. It also includes a concise treatment of absolute continuity and singularity, contiguity, and entire separation of measures by semimartingale approach. Two basic types of processes frequently encountered in applied probability and statistics are highlighted: processes with independent increments and marked point processes encountered frequently in applied probability and statistics. Semimartingale Theory and Stochastic Calculus is a self-contained and comprehensive book that will be valuable for research mathematicians, statisticians, engineers, and students.

Semimartingales and their Statistical Inference

Semimartingales and their Statistical Inference
Author: B.L.S. Prakasa Rao
Publisher: CRC Press
Total Pages: 684
Release: 1999-05-11
Genre: Mathematics
ISBN: 9781584880080

Statistical inference carries great significance in model building from both the theoretical and the applications points of view. Its applications to engineering and economic systems, financial economics, and the biological and medical sciences have made statistical inference for stochastic processes a well-recognized and important branch of statistics and probability. The class of semimartingales includes a large class of stochastic processes, including diffusion type processes, point processes, and diffusion type processes with jumps, widely used for stochastic modeling. Until now, however, researchers have had no single reference that collected the research conducted on the asymptotic theory for semimartingales. Semimartingales and their Statistical Inference, fills this need by presenting a comprehensive discussion of the asymptotic theory of semimartingales at a level needed for researchers working in the area of statistical inference for stochastic processes. The author brings together into one volume the state-of-the-art in the inferential aspect for such processes. The topics discussed include: Asymptotic likelihood theory Quasi-likelihood Likelihood and efficiency Inference for counting processes Inference for semimartingale regression models The author addresses a number of stochastic modeling applications from engineering, economic systems, financial economics, and medical sciences. He also includes some of the new and challenging statistical and probabilistic problems facing today's active researchers working in the area of inference for stochastic processes.

Continuous Martingales and Brownian Motion

Continuous Martingales and Brownian Motion
Author: Daniel Revuz
Publisher: Springer Science & Business Media
Total Pages: 608
Release: 2013-03-09
Genre: Mathematics
ISBN: 3662064006

"This is a magnificent book! Its purpose is to describe in considerable detail a variety of techniques used by probabilists in the investigation of problems concerning Brownian motion....This is THE book for a capable graduate student starting out on research in probability: the effect of working through it is as if the authors are sitting beside one, enthusiastically explaining the theory, presenting further developments as exercises." –BULLETIN OF THE L.M.S.

Sharp Martingale and Semimartingale Inequalities

Sharp Martingale and Semimartingale Inequalities
Author: Adam Osękowski
Publisher: Springer Science & Business Media
Total Pages: 471
Release: 2012-08-14
Genre: Mathematics
ISBN: 3034803702

This monograph is a presentation of a unified approach to a certain class of semimartingale inequalities, which can be regarded as probabilistic extensions of classical estimates for conjugate harmonic functions on the unit disc. The approach, which has its roots in the seminal works of Burkholder in the 80s, enables to deduce a given inequality for semimartingales from the existence of a certain special function with some convex-type properties. Remarkably, an appropriate application of the method leads to the sharp version of the estimate under investigation, which is particularly important for applications. These include the theory of quasiregular mappings (with deep implications to the geometric function theory); the boundedness of two-dimensional Hilbert transform and a more general class of Fourier multipliers; the theory of rank-one convex and quasiconvex functions; and more. The book is divided into a few separate parts. In the introductory chapter we present motivation for the results and relate them to some classical problems in harmonic analysis. The next part contains a general description of the method, which is applied in subsequent chapters to the study of sharp estimates for discrete-time martingales; discrete-time sub- and supermartingales; continuous time processes; the square and maximal functions. Each chapter contains additional bibliographical notes included for reference.​

Foundations of Modern Probability

Foundations of Modern Probability
Author: Olav Kallenberg
Publisher: Springer Science & Business Media
Total Pages: 670
Release: 2002-01-08
Genre: Mathematics
ISBN: 9780387953137

The first edition of this single volume on the theory of probability has become a highly-praised standard reference for many areas of probability theory. Chapters from the first edition have been revised and corrected, and this edition contains four new chapters. New material covered includes multivariate and ratio ergodic theorems, shift coupling, Palm distributions, Harris recurrence, invariant measures, and strong and weak ergodicity.

Lectures on Probability Theory and Statistics

Lectures on Probability Theory and Statistics
Author: M. Emery
Publisher: Springer
Total Pages: 359
Release: 2007-05-06
Genre: Mathematics
ISBN: 3540450297

This volume contains lectures given at the Saint-Flour Summer School of Probability Theory during 17th Aug. - 3rd Sept. 1998. The contents of the three courses are the following: - Continuous martingales on differential manifolds. - Topics in non-parametric statistics. - Free probability theory. The reader is expected to have a graduate level in probability theory and statistics. This book is of interest to PhD students in probability and statistics or operators theory as well as for researchers in all these fields. The series of lecture notes from the Saint-Flour Probability Summer School can be considered as an encyclopedia of probability theory and related fields.

Theory of Martingales

Theory of Martingales
Author: Robert Liptser
Publisher: Springer Science & Business Media
Total Pages: 806
Release: 2012-12-06
Genre: Mathematics
ISBN: 9400924380

One service mathematics has rc:ndered the 'Et moi, "', si j'avait su comment CD revenir, je n'y serais point alle. ' human race. It has put common SCIIJC back Jules Verne where it belongs. on the topmost shelf next to tbe dusty canister 1abdled 'discarded non- The series is divergent; tberefore we may be sense'. able to do sometbing witb it Eric T. Bell O. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics ... '; 'One service logic has rendered com puter science ... '; 'One service category theory has rendered mathematics ... '. All arguably true_ And all statements obtainable this way form part of the raison d'etre of this series_ This series, Mathematics and Its ApplicatiOns, started in 1977. Now that over one hundred volumes have appeared it seems opportune to reexamine its scope_ At the time I wrote "Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the 'tree' of knowledge of mathematics and related fields does not grow only by putting forth new branches.

Stochastic Calculus in Manifolds

Stochastic Calculus in Manifolds
Author: Michel Emery
Publisher: Springer Science & Business Media
Total Pages: 158
Release: 2012-12-06
Genre: Mathematics
ISBN: 3642750516

Addressed to both pure and applied probabilitists, including graduate students, this text is a pedagogically-oriented introduction to the Schwartz-Meyer second-order geometry and its use in stochastic calculus. P.A. Meyer has contributed an appendix: "A short presentation of stochastic calculus" presenting the basis of stochastic calculus and thus making the book better accessible to non-probabilitists also. No prior knowledge of differential geometry is assumed of the reader: this is covered within the text to the extent. The general theory is presented only towards the end of the book, after the reader has been exposed to two particular instances - martingales and Brownian motions - in manifolds. The book also includes new material on non-confluence of martingales, s.d.e. from one manifold to another, approximation results for martingales, solutions to Stratonovich differential equations. Thus this book will prove very useful to specialists and non-specialists alike, as a self-contained introductory text or as a compact reference.