Semi Classical Analysis For Nonlinear Schrodinger Equations
Download Semi Classical Analysis For Nonlinear Schrodinger Equations full books in PDF, epub, and Kindle. Read online free Semi Classical Analysis For Nonlinear Schrodinger Equations ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Remi Carles |
Publisher | : World Scientific |
Total Pages | : 367 |
Release | : 2020-10-05 |
Genre | : Mathematics |
ISBN | : 9811227926 |
The second edition of this book consists of three parts. The first one is dedicated to the WKB methods and the semi-classical limit before the formation of caustics. The second part treats the semi-classical limit in the presence of caustics, in the special geometric case where the caustic is reduced to a point (or to several isolated points). The third part is new in this edition, and addresses the nonlinear propagation of coherent states. The three parts are essentially independent.Compared with the first edition, the first part is enriched by a new section on multiphase expansions in the case of weakly nonlinear geometric optics, and an application related to this study, concerning instability results for nonlinear Schrödinger equations in negative order Sobolev spaces.The third part is an overview of results concerning nonlinear effects in the propagation of coherent states, in the case of a power nonlinearity, and in the richer case of Hartree-like nonlinearities. It includes explicit formulas of an independent interest, such as generalized Mehler's formula, generalized lens transform.
Author | : Spyridon Kamvissis |
Publisher | : Princeton University Press |
Total Pages | : 280 |
Release | : 2003-08-18 |
Genre | : Mathematics |
ISBN | : 1400837189 |
This book represents the first asymptotic analysis, via completely integrable techniques, of the initial value problem for the focusing nonlinear Schrödinger equation in the semiclassical asymptotic regime. This problem is a key model in nonlinear optical physics and has increasingly important applications in the telecommunications industry. The authors exploit complete integrability to establish pointwise asymptotics for this problem's solution in the semiclassical regime and explicit integration for the underlying nonlinear, elliptic, partial differential equations suspected of governing the semiclassical behavior. In doing so they also aim to explain the observed gradient catastrophe for the underlying nonlinear elliptic partial differential equations, and to set forth a detailed, pointwise asymptotic description of the violent oscillations that emerge following the gradient catastrophe. To achieve this, the authors have extended the reach of two powerful analytical techniques that have arisen through the asymptotic analysis of integrable systems: the Lax-Levermore-Venakides variational approach to singular limits in integrable systems, and Deift and Zhou's nonlinear Steepest-Descent/Stationary Phase method for the analysis of Riemann-Hilbert problems. In particular, they introduce a systematic procedure for handling certain Riemann-Hilbert problems with poles accumulating on curves in the plane. This book, which includes an appendix on the use of the Fredholm theory for Riemann-Hilbert problems in the Hölder class, is intended for researchers and graduate students of applied mathematics and analysis, especially those with an interest in integrable systems, nonlinear waves, or complex analysis.
Author | : Ping Zhang |
Publisher | : American Mathematical Soc. |
Total Pages | : 212 |
Release | : |
Genre | : Mathematics |
ISBN | : 9780821883563 |
"This book is based on a course entitled "Wigner measures and semiclassical limits of nonlinear Schrodinger equations," which the author taught at the Courant Institute of Mathematical Sciences at New York University in the spring of 2007. The author's main purpose is to apply the theory of semiclassical pseudodifferential operators to the study of various high-frequency limits of equations from quantum mechanics. In particular, the focus of attention is on Wigner measure and recent progress on how to use it as a tool to study various problems arising from semiclassical limits of Schrodinger-type equations." "At the end of each chapter, the reader will find references and remarks about recent progress on related problems. The book is self-contained and is suitable for an advanced graduate course on the topic."--BOOK JACKET.
Author | : Rémi Carles |
Publisher | : World Scientific Publishing Company Incorporated |
Total Pages | : 243 |
Release | : 2008 |
Genre | : Mathematics |
ISBN | : 9812793127 |
Author | : Maciej Zworski |
Publisher | : American Mathematical Soc. |
Total Pages | : 448 |
Release | : 2012 |
Genre | : Mathematics |
ISBN | : 0821883208 |
"...A graduate level text introducing readers to semiclassical and microlocal methods in PDE." -- from xi.
Author | : Rémi Carles |
Publisher | : World Scientific Publishing Company |
Total Pages | : 0 |
Release | : 2020-09-29 |
Genre | : Mathematics |
ISBN | : 9789811227905 |
The second edition of this book consists of three parts. The first one is dedicated to the WKB methods and the semi-classical limit before the formation of caustics. The second part treats the semi-classical limit in the presence of caustics, in the special geometric case where the caustic is reduced to a point (or to several isolated points). The third part is new in this edition, and addresses the nonlinear propagation of coherent states. The three parts are essentially independent. Compared with the first edition, the first part is enriched by a new section on multiphase expansions in the case of weakly nonlinear geometric optics, and an application related to this study, concerning instability results for nonlinear Schrdinger equations in negative order Sobolev spaces. The third part is an overview of results concerning nonlinear effects in the propagation of coherent states, in the case of a power nonlinearity, and in the richer case of Hartree-like nonlinearities. It includes explicit formulas of an independent interest, such as generalized Mehler's formula, generalized lens transform.
Author | : Mark J. Ablowitz |
Publisher | : SIAM |
Total Pages | : 433 |
Release | : 2006-05-15 |
Genre | : Mathematics |
ISBN | : 089871477X |
A study, by two of the major contributors to the theory, of the inverse scattering transform and its application to problems of nonlinear dispersive waves that arise in fluid dynamics, plasma physics, nonlinear optics, particle physics, crystal lattice theory, nonlinear circuit theory and other areas. A soliton is a localised pulse-like nonlinear wave that possesses remarkable stability properties. Typically, problems that admit soliton solutions are in the form of evolution equations that describe how some variable or set of variables evolve in time from a given state. The equations may take a variety of forms, for example, PDEs, differential difference equations, partial difference equations, and integrodifferential equations, as well as coupled ODEs of finite order. What is surprising is that, although these problems are nonlinear, the general solution that evolves from almost arbitrary initial data may be obtained without approximation.
Author | : André Bach |
Publisher | : Springer Science & Business Media |
Total Pages | : 193 |
Release | : 2013-03-14 |
Genre | : Mathematics |
ISBN | : 1475744951 |
This book presents the techniques used in the microlocal treatment of semiclassical problems coming from quantum physics in a pedagogical, way and is mainly addressed to non-specialists in the subject. It is based on lectures taught by the author over several years, and includes many exercises providing outlines of useful applications of the semi-classical theory.
Author | : USAMA. AL KHAWAJA |
Publisher | : Institute of Physics Publishing |
Total Pages | : 0 |
Release | : 2024-06-28 |
Genre | : Science |
ISBN | : 9780750359559 |
Author | : Peter A. Markowich |
Publisher | : Springer Science & Business Media |
Total Pages | : 261 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 3709169615 |
In recent years the mathematical modeling of charge transport in semi conductors has become a thriving area in applied mathematics. The drift diffusion equations, which constitute the most popular model for the simula tion of the electrical behavior of semiconductor devices, are by now mathe matically quite well understood. As a consequence numerical methods have been developed, which allow for reasonably efficient computer simulations in many cases of practical relevance. Nowadays, research on the drift diffu sion model is of a highly specialized nature. It concentrates on the explora tion of possibly more efficient discretization methods (e.g. mixed finite elements, streamline diffusion), on the improvement of the performance of nonlinear iteration and linear equation solvers, and on three dimensional applications. The ongoing miniaturization of semiconductor devices has prompted a shift of the focus of the modeling research lately, since the drift diffusion model does not account well for charge transport in ultra integrated devices. Extensions of the drift diffusion model (so called hydrodynamic models) are under investigation for the modeling of hot electron effects in submicron MOS-transistors, and supercomputer technology has made it possible to employ kinetic models (semiclassical Boltzmann-Poisson and Wigner Poisson equations) for the simulation of certain highly integrated devices.