Self-Similar Groups

Self-Similar Groups
Author: Volodymyr Nekrashevych
Publisher: American Mathematical Soc.
Total Pages: 248
Release: 2005
Genre: Mathematics
ISBN: 0821838318

Self-similar groups (groups generated by automata) initially appeared as examples of groups that are easy to define but have exotic properties like nontrivial torsion, intermediate growth, etc. This book studies the self-similarity phenomenon in group theory and shows its intimate relationship with dynamical systems and more classical self-similar structures, such as fractals, Julia sets, and self-affine tilings. This connection is established through the central topics of the book, which are the notions of the iterated monodromy group and limit space. A wide variety of examples and different applications of self-similar groups to dynamical systems and vice versa are discussed. In particular, it is shown that Julia sets can be reconstructed from the respective iterated monodromy groups and that groups with exotic properties can appear not just as isolated examples, but as naturally defined iterated monodromy groups of rational functions. The book offers important, new mathematics that will open new avenues of research in group theory and dynamical systems. It is intended to be accessible to a wide readership of professional mathematicians.

Self-Similar Groups

Self-Similar Groups
Author: Volodymyr Nekrashevych
Publisher: American Mathematical Society
Total Pages: 248
Release: 2024-04-05
Genre: Mathematics
ISBN: 1470476916

Self-similar groups (groups generated by automata) appeared initially as examples of groups that are easy to define but that enjoy exotic properties like nontrivial torsion, intermediate growth, etc. The book studies the self-similarity phenomenon in group theory and shows its intimate relation with dynamical systems and more classical self-similar structures, such as fractals, Julia sets, and self-affine tilings. The relation is established through the notions of the iterated monodromy group and the limit space, which are the central topics of the book. A wide variety of examples and different applications of self-similar groups to dynamical systems and vice versa are discussed. It is shown in particular how Julia sets can be reconstructed from the respective iterated monodromy groups and that groups with exotic properties appear now not just as isolated examples but as naturally defined iterated monodromy groups of rational functions. The book is intended to be accessible to a wide mathematical readership, including graduate students interested in group theory and dynamical systems.

A Sampling of Remarkable Groups

A Sampling of Remarkable Groups
Author: Marianna C. Bonanome
Publisher: Springer
Total Pages: 198
Release: 2019-01-05
Genre: Mathematics
ISBN: 3030019780

This textbook offers students with a basic understanding of group theory a preview of several interesting groups they would not typically encounter until later in their academic careers. By presenting these advanced concepts at this stage, they will gain a deeper understanding of the subject and be motivated to explore more of it. Groups covered include Thompson’s groups, self-similar groups, Lamplighter groups, and Baumslag-Solitar groups. Each chapter focuses on one of these groups, and begins by discussing why they are interesting, how they originated, and why they are important mathematically. A collection of specific references for additional reading, topics for further research, and exercises are included at the end of every chapter to encourage students’ continued education. With its accessible presentation and engaging style, A Sampling of Remarkable Groups is suitable for students in upper-level undergraduate or beginning graduate abstract algebra courses. It will also be of interest to researchers in mathematics, computer science, and related fields.

Fractals: A Very Short Introduction

Fractals: A Very Short Introduction
Author: Kenneth Falconer
Publisher: OUP Oxford
Total Pages: 153
Release: 2013-09-26
Genre: Mathematics
ISBN: 0191663441

Many are familiar with the beauty and ubiquity of fractal forms within nature. Unlike the study of smooth forms such as spheres, fractal geometry describes more familiar shapes and patterns, such as the complex contours of coastlines, the outlines of clouds, and the branching of trees. In this Very Short Introduction, Kenneth Falconer looks at the roots of the 'fractal revolution' that occurred in mathematics in the 20th century, presents the 'new geometry' of fractals, explains the basic concepts, and explores the wide range of applications in science, and in aspects of economics. This is essential introductory reading for students of mathematics and science, and those interested in popular science and mathematics. ABOUT THE SERIES: The Very Short Introductions series from Oxford University Press contains hundreds of titles in almost every subject area. These pocket-sized books are the perfect way to get ahead in a new subject quickly. Our expert authors combine facts, analysis, perspective, new ideas, and enthusiasm to make interesting and challenging topics highly readable.

A Course in Finite Group Representation Theory

A Course in Finite Group Representation Theory
Author: Peter Webb
Publisher: Cambridge University Press
Total Pages: 339
Release: 2016-08-19
Genre: Mathematics
ISBN: 1107162394

This graduate-level text provides a thorough grounding in the representation theory of finite groups over fields and rings. The book provides a balanced and comprehensive account of the subject, detailing the methods needed to analyze representations that arise in many areas of mathematics. Key topics include the construction and use of character tables, the role of induction and restriction, projective and simple modules for group algebras, indecomposable representations, Brauer characters, and block theory. This classroom-tested text provides motivation through a large number of worked examples, with exercises at the end of each chapter that test the reader's knowledge, provide further examples and practice, and include results not proven in the text. Prerequisites include a graduate course in abstract algebra, and familiarity with the properties of groups, rings, field extensions, and linear algebra.

Sheaf Theory through Examples

Sheaf Theory through Examples
Author: Daniel Rosiak
Publisher: MIT Press
Total Pages: 454
Release: 2022-10-25
Genre: Mathematics
ISBN: 0262362376

An approachable introduction to elementary sheaf theory and its applications beyond pure math. Sheaves are mathematical constructions concerned with passages from local properties to global ones. They have played a fundamental role in the development of many areas of modern mathematics, yet the broad conceptual power of sheaf theory and its wide applicability to areas beyond pure math have only recently begun to be appreciated. Taking an applied category theory perspective, Sheaf Theory through Examples provides an approachable introduction to elementary sheaf theory and examines applications including n-colorings of graphs, satellite data, chess problems, Bayesian networks, self-similar groups, musical performance, complexes, and much more. With an emphasis on developing the theory via a wealth of well-motivated and vividly illustrated examples, Sheaf Theory through Examples supplements the formal development of concepts with philosophical reflections on topology, category theory, and sheaf theory, alongside a selection of advanced topics and examples that illustrate ideas like cellular sheaf cohomology, toposes, and geometric morphisms. Sheaf Theory through Examples seeks to bridge the powerful results of sheaf theory as used by mathematicians and real-world applications, while also supplementing the technical matters with a unique philosophical perspective attuned to the broader development of ideas.

Scaling, Self-similarity, and Intermediate Asymptotics

Scaling, Self-similarity, and Intermediate Asymptotics
Author: G. I. Barenblatt
Publisher: Cambridge University Press
Total Pages: 412
Release: 1996-12-12
Genre: Mathematics
ISBN: 9780521435222

Scaling laws reveal the fundamental property of phenomena, namely self-similarity - repeating in time and/or space - which substantially simplifies the mathematical modelling of the phenomena themselves. This book begins from a non-traditional exposition of dimensional analysis, physical similarity theory, and general theory of scaling phenomena, using classical examples to demonstrate that the onset of scaling is not until the influence of initial and/or boundary conditions has disappeared but when the system is still far from equilibrium. Numerous examples from a diverse range of fields, including theoretical biology, fracture mechanics, atmospheric and oceanic phenomena, and flame propagation, are presented for which the ideas of scaling, intermediate asymptotics, self-similarity, and renormalisation were of decisive value in modelling.

Scaling

Scaling
Author: G. I. Barenblatt
Publisher: Cambridge University Press
Total Pages: 187
Release: 2003-11-13
Genre: Mathematics
ISBN: 0521826578

The author describes and teaches the art of discovering scaling laws, starting from dimensional analysis and physical similarity, which are here given a modern treatment. He demonstrates the concepts of intermediate asymptotics and the renormalisation group as natural consequences of self-similarity and shows how and when these notions and tools can be used to tackle the task at hand, and when they cannot. Based on courses taught to undergraduate and graduate students, the book can also be used for self-study by biologists, chemists, astronomers, engineers and geoscientists.

Lie Groups, Lie Algebras, and Representations

Lie Groups, Lie Algebras, and Representations
Author: Brian Hall
Publisher: Springer
Total Pages: 452
Release: 2015-05-11
Genre: Mathematics
ISBN: 3319134671

This textbook treats Lie groups, Lie algebras and their representations in an elementary but fully rigorous fashion requiring minimal prerequisites. In particular, the theory of matrix Lie groups and their Lie algebras is developed using only linear algebra, and more motivation and intuition for proofs is provided than in most classic texts on the subject. In addition to its accessible treatment of the basic theory of Lie groups and Lie algebras, the book is also noteworthy for including: a treatment of the Baker–Campbell–Hausdorff formula and its use in place of the Frobenius theorem to establish deeper results about the relationship between Lie groups and Lie algebras motivation for the machinery of roots, weights and the Weyl group via a concrete and detailed exposition of the representation theory of sl(3;C) an unconventional definition of semisimplicity that allows for a rapid development of the structure theory of semisimple Lie algebras a self-contained construction of the representations of compact groups, independent of Lie-algebraic arguments The second edition of Lie Groups, Lie Algebras, and Representations contains many substantial improvements and additions, among them: an entirely new part devoted to the structure and representation theory of compact Lie groups; a complete derivation of the main properties of root systems; the construction of finite-dimensional representations of semisimple Lie algebras has been elaborated; a treatment of universal enveloping algebras, including a proof of the Poincaré–Birkhoff–Witt theorem and the existence of Verma modules; complete proofs of the Weyl character formula, the Weyl dimension formula and the Kostant multiplicity formula. Review of the first edition: This is an excellent book. It deserves to, and undoubtedly will, become the standard text for early graduate courses in Lie group theory ... an important addition to the textbook literature ... it is highly recommended. — The Mathematical Gazette