Security-Aware Design for Cyber-Physical Systems

Security-Aware Design for Cyber-Physical Systems
Author: Chung-Wei Lin
Publisher: Springer
Total Pages: 106
Release: 2017-01-02
Genre: Technology & Engineering
ISBN: 3319513281

Addressing the rising security issues during the design stages of cyber-physical systems, this book develops a systematic approach to address security at early design stages together with all other design constraints. Cyber-attacks become more threatening as systems are becoming more connected with the surrounding environment, infrastructures, and other systems. Security mechanisms can be designed to protect against attacks and meet security requirements, but there are many challenges of applying security mechanisms to cyber-physical systems including open environments, limited resources, strict timing requirements, and large number of devices. Designed for researchers and professionals, this book is valuable for individuals working in network systems, security mechanisms, and system design. It is also suitable for advanced-level students of computer science.

Security and Quality in Cyber-Physical Systems Engineering

Security and Quality in Cyber-Physical Systems Engineering
Author: Stefan Biffl
Publisher: Springer Nature
Total Pages: 518
Release: 2019-11-09
Genre: Computers
ISBN: 3030253120

This book examines the requirements, risks, and solutions to improve the security and quality of complex cyber-physical systems (C-CPS), such as production systems, power plants, and airplanes, in order to ascertain whether it is possible to protect engineering organizations against cyber threats and to ensure engineering project quality. The book consists of three parts that logically build upon each other. Part I "Product Engineering of Complex Cyber-Physical Systems" discusses the structure and behavior of engineering organizations producing complex cyber-physical systems, providing insights into processes and engineering activities, and highlighting the requirements and border conditions for secure and high-quality engineering. Part II "Engineering Quality Improvement" addresses quality improvements with a focus on engineering data generation, exchange, aggregation, and use within an engineering organization, and the need for proper data modeling and engineering-result validation. Lastly, Part III "Engineering Security Improvement" considers security aspects concerning C-CPS engineering, including engineering organizations’ security assessments and engineering data management, security concepts and technologies that may be leveraged to mitigate the manipulation of engineering data, as well as design and run-time aspects of secure complex cyber-physical systems. The book is intended for several target groups: it enables computer scientists to identify research issues related to the development of new methods, architectures, and technologies for improving quality and security in multi-disciplinary engineering, pushing forward the current state of the art. It also allows researchers involved in the engineering of C-CPS to gain a better understanding of the challenges and requirements of multi-disciplinary engineering that will guide them in their future research and development activities. Lastly, it offers practicing engineers and managers with engineering backgrounds insights into the benefits and limitations of applicable methods, architectures, and technologies for selected use cases.

Machine Learning and Optimization Techniques for Automotive Cyber-Physical Systems

Machine Learning and Optimization Techniques for Automotive Cyber-Physical Systems
Author: Vipin Kumar Kukkala
Publisher: Springer Nature
Total Pages: 782
Release: 2023-10-03
Genre: Technology & Engineering
ISBN: 3031280164

This book provides comprehensive coverage of various solutions that address issues related to real-time performance, security, and robustness in emerging automotive platforms. The authors discuss recent advances towards the goal of enabling reliable, secure, and robust, time-critical automotive cyber-physical systems, using advanced optimization and machine learning techniques. The focus is on presenting state-of-the-art solutions to various challenges including real-time data scheduling, secure communication within and outside the vehicle, tolerance to faults, optimizing the use of resource-constrained automotive ECUs, intrusion detection, and developing robust perception and control techniques for increasingly autonomous vehicles.

Orchestrating a Resource-aware Edge

Orchestrating a Resource-aware Edge
Author: Klervie Toczé
Publisher: Linköping University Electronic Press
Total Pages: 122
Release: 2024-09-02
Genre:
ISBN: 9180757480

More and more services are moving to the cloud, attracted by the promise of unlimited resources that are accessible anytime, and are managed by someone else. However, hosting every type of service in large cloud datacenters is not possible or suitable, as some emerging applications have stringent latency or privacy requirements, while also handling huge amounts of data. Therefore, in recent years, a new paradigm has been proposed to address the needs of these applications: the edge computing paradigm. Resources provided at the edge (e.g., for computation and communication) are constrained, hence resource management is of crucial importance. The incoming load to the edge infrastructure varies both in time and space. Managing the edge infrastructure so that the appropriate resources are available at the required time and location is called orchestrating. This is especially challenging in case of sudden load spikes and when the orchestration impact itself has to be limited. This thesis enables edge computing orchestration with increased resource-awareness by contributing with methods, techniques, and concepts for edge resource management. First, it proposes methods to better understand the edge resource demand. Second, it provides solutions on the supply side for orchestrating edge resources with different characteristics in order to serve edge applications with satisfactory quality of service. Finally, the thesis includes a critical perspective on the paradigm, by considering sustainability challenges. To understand the demand patterns, the thesis presents a methodology for categorizing the large variety of use cases that are proposed in the literature as potential applications for edge computing. The thesis also proposes methods for characterizing and modeling applications, as well as for gathering traces from real applications and analyzing them. These different approaches are applied to a prototype from a typical edge application domain: Mixed Reality. The important insight here is that application descriptions or models that are not based on a real application may not be giving an accurate picture of the load. This can drive incorrect decisions about what should be done on the supply side and thus waste resources. Regarding resource supply, the thesis proposes two orchestration frameworks for managing edge resources and successfully dealing with load spikes while avoiding over-provisioning. The first one utilizes mobile edge devices while the second leverages the concept of spare devices. Then, focusing on the request placement part of orchestration, the thesis formalizes it in the case of applications structured as chains of functions (so-called microservices) as an instance of the Traveling Purchaser Problem and solves it using Integer Linear Programming. Two different energy metrics influencing request placement decisions are proposed and evaluated. Finally, the thesis explores further resource awareness. Sustainability challenges that should be highlighted more within edge computing are collected. Among those related to resource use, the strategy of sufficiency is promoted as a way forward. It involves aiming at only using the needed resources (no more, no less) with a goal of reducing resource usage. Different tools to adopt it are proposed and their use demonstrated through a case study.

Big Data Analytics for Cyber-Physical Systems

Big Data Analytics for Cyber-Physical Systems
Author: Shiyan Hu
Publisher: Springer Nature
Total Pages: 273
Release: 2020-06-25
Genre: Computers
ISBN: 303043494X

This book highlights research and survey articles dedicated to big data techniques for cyber-physical system (CPS), which addresses the close interactions and feedback controls between cyber components and physical components. The book first discusses some fundamental big data problems and solutions in large scale distributed CPSs. The book then addresses the design and control challenges in multiple CPS domains such as vehicular system, smart city, smart building, and digital microfluidic biochips. This book also presents the recent advances and trends in the maritime simulation system and the flood defence system.

Security and Privacy in Cyber-Physical Systems

Security and Privacy in Cyber-Physical Systems
Author: Houbing Song
Publisher: John Wiley & Sons
Total Pages: 522
Release: 2017-09-11
Genre: Computers
ISBN: 1119226066

Written by a team of experts at the forefront of the cyber-physical systems (CPS) revolution, this book provides an in-depth look at security and privacy, two of the most critical challenges facing both the CPS research and development community and ICT professionals. It explores, in depth, the key technical, social, and legal issues at stake, and it provides readers with the information they need to advance research and development in this exciting area. Cyber-physical systems (CPS) are engineered systems that are built from, and depend upon the seamless integration of computational algorithms and physical components. Advances in CPS will enable capability, adaptability, scalability, resiliency, safety, security, and usability far in excess of what today’s simple embedded systems can provide. Just as the Internet revolutionized the way we interact with information, CPS technology has already begun to transform the way people interact with engineered systems. In the years ahead, smart CPS will drive innovation and competition across industry sectors, from agriculture, energy, and transportation, to architecture, healthcare, and manufacturing. A priceless source of practical information and inspiration, Security and Privacy in Cyber-Physical Systems: Foundations, Principles and Applications is certain to have a profound impact on ongoing R&D and education at the confluence of security, privacy, and CPS.

Safe, Autonomous and Intelligent Vehicles

Safe, Autonomous and Intelligent Vehicles
Author: Huafeng Yu
Publisher: Springer
Total Pages: 215
Release: 2018-11-14
Genre: Technology & Engineering
ISBN: 3319973010

This book covers the start-of-the-art research and development for the emerging area of autonomous and intelligent systems. In particular, the authors emphasize design and validation methodologies to address the grand challenges related to safety. This book offers a holistic view of a broad range of technical aspects (including perception, localization and navigation, motion control, etc.) and application domains (including automobile, aerospace, etc.), presents major challenges and discusses possible solutions.

Empirical Studies in Machine Psychology

Empirical Studies in Machine Psychology
Author: Robert Johansson
Publisher: Linköping University Electronic Press
Total Pages: 201
Release: 2024-10-09
Genre:
ISBN: 9179295061

This thesis presents Machine Psychology as an interdisciplinary paradigm that integrates learning psychology principles with an adaptive computer system for the development of Artificial General Intelligence (AGI). By synthesizing behavioral psychology with a formal intelligence model, the Non-Axiomatic Reasoning System (NARS), this work explores the potential of operant conditioning paradigms to advance AGI research. The thesis begins by introducing the conceptual foundations of Machine Psychology, detailing its alignment with the theoretical constructs of learning psychology and the formalism of NARS. It then progresses through a series of empirical studies designed to systematically investigate the emergence of increasingly complex cognitive behaviors as NARS interacts with its environment. Initially, operant conditioning is established as a foundational principle for developing adaptive behavior with NARS. Subsequent chapters explore increasingly sophisticated cognitive capabilities, all studied with NARS using experimental paradigms from operant learning psychology: Generalized identity matching, Functional equivalence, and Arbitrarily Applicable Relational Responding. Throughout this research, Machine Psychology is demonstrated to be a promising framework for guiding AGI research, allowing both the manipulation of environmental contingencies and the system’s intrinsic logical processes. The thesis contributes to AGI research by showing how using operant psychological paradigms with NARS can enable cognitive abilities similar to human cognition. These findings set the stage for AGI systems that learn and adapt more like humans, potentially advancing the creation of more general and flexible AI. Denna avhandling introducerar Maskinpsykologi som ett tvärvetenskapligt område där principer från inlärningspsykologi integreras med ett adaptivt datorsystem. Genom att kombinera forskning från beteendepsykologi med en formell modell för intelligens (Non-Axiomatic Reasoning System; NARS), undersöker avhandlingen hur operant betingning kan användas för att driva utvecklingen av Artificiell General Intelligens (AGI) framåt. Avhandlingen börjar med att förklara grunderna i Maskinpsykologi och hur dessa relaterar till både inlärningspsykologi och NARS. Därefter presenteras en serie experiment som systematiskt undersöker hur allt mer komplexa kognitiva beteenden kan uppstå när NARS interagerar med sin omgivning. Till att börja med etableras operant betingning som en central metod för att utveckla adaptiva beteenden med NARS. I de följande kapitlen utforskas hur NARS, genom experiment inspirerade av operant inlärningspsykologi, kan utveckla mer avancerade kognitiva förmågor som till exempel generaliserad identitetsmatchning, funktionell ekvivalens och så kallade arbiträrt applicerbara relationsresponser. Denna forskning visar att Maskinpsykologi är ett lovande verktyg för att vägleda AGI-forskning, eftersom det möjliggör att både påverka omgivningsfaktorer och styra systemets interna logiska processer. Avhandlingen bidrar till AGI-forskning genom att visa hur operanta psykologiska metoder, tillämpade på NARS, kan möjliggöra kognitiva förmågor som liknar mänskligt tänkande. Dessa insikter öppnar nya möjligheter för att utveckla AI-system som kan lära sig och anpassa sig på ett mer mänskligt sätt, vilket kan leda till skapandet av mer generell och flexibel AI.

Computer Safety, Reliability, and Security

Computer Safety, Reliability, and Security
Author: António Casimiro
Publisher: Springer Nature
Total Pages: 450
Release: 2020-08-19
Genre: Computers
ISBN: 3030545490

This book constitutes the proceedings of the 39th International Conference on Computer Safety, Reliability and Security, SAFECOMP 2020, held in Lisbon, Portugal, in September 2020.* The 27 full and 2 short papers included in this volume were carefully reviewed and selected from 116 submissions. They were organized in topical sections named: safety cases and argumentation; formal verification and analysis; security modelling and methods; assurance of learning-enabled systems; practical experience and tools; threat analysis and risk mitigation; cyber-physical systems security; and fault injection and fault tolerance. *The conference was held virtually due to the COVID-19 pandemic. The chapter ‘Assurance Argument Elements for Off-the-Shelf, Complex Computational Hardware’ is available open access under an Open Government License 3.0 via link.springer.com.

Beyond Recognition

Beyond Recognition
Author: Le Minh-Ha
Publisher: Linköping University Electronic Press
Total Pages: 103
Release: 2024-05-06
Genre:
ISBN: 918075676X

This thesis addresses the need to balance the use of facial recognition systems with the need to protect personal privacy in machine learning and biometric identification. As advances in deep learning accelerate their evolution, facial recognition systems enhance security capabilities, but also risk invading personal privacy. Our research identifies and addresses critical vulnerabilities inherent in facial recognition systems, and proposes innovative privacy-enhancing technologies that anonymize facial data while maintaining its utility for legitimate applications. Our investigation centers on the development of methodologies and frameworks that achieve k-anonymity in facial datasets; leverage identity disentanglement to facilitate anonymization; exploit the vulnerabilities of facial recognition systems to underscore their limitations; and implement practical defenses against unauthorized recognition systems. We introduce novel contributions such as AnonFACES, StyleID, IdDecoder, StyleAdv, and DiffPrivate, each designed to protect facial privacy through advanced adversarial machine learning techniques and generative models. These solutions not only demonstrate the feasibility of protecting facial privacy in an increasingly surveilled world, but also highlight the ongoing need for robust countermeasures against the ever-evolving capabilities of facial recognition technology. Continuous innovation in privacy-enhancing technologies is required to safeguard individuals from the pervasive reach of digital surveillance and protect their fundamental right to privacy. By providing open-source, publicly available tools, and frameworks, this thesis contributes to the collective effort to ensure that advancements in facial recognition serve the public good without compromising individual rights. Our multi-disciplinary approach bridges the gap between biometric systems, adversarial machine learning, and generative modeling to pave the way for future research in the domain and support AI innovation where technological advancement and privacy are balanced.