Second Order Differential Equations
Download Second Order Differential Equations full books in PDF, epub, and Kindle. Read online free Second Order Differential Equations ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Gerhard Kristensson |
Publisher | : Springer Science & Business Media |
Total Pages | : 225 |
Release | : 2010-08-05 |
Genre | : Mathematics |
ISBN | : 1441970207 |
Second Order Differential Equations presents a classical piece of theory concerning hypergeometric special functions as solutions of second-order linear differential equations. The theory is presented in an entirely self-contained way, starting with an introduction of the solution of the second-order differential equations and then focusingon the systematic treatment and classification of these solutions. Each chapter contains a set of problems which help reinforce the theory. Some of the preliminaries are covered in appendices at the end of the book, one of which provides an introduction to Poincaré-Perron theory, and the appendix also contains a new way of analyzing the asymptomatic behavior of solutions of differential equations. This textbook is appropriate for advanced undergraduate and graduate students in Mathematics, Physics, and Engineering interested in Ordinary and Partial Differntial Equations. A solutions manual is available online.
Author | : D. Gilbarg |
Publisher | : Springer Science & Business Media |
Total Pages | : 409 |
Release | : 2013-03-09 |
Genre | : Mathematics |
ISBN | : 364296379X |
This volume is intended as an essentially self contained exposition of portions of the theory of second order quasilinear elliptic partial differential equations, with emphasis on the Dirichlet problem in bounded domains. It grew out of lecture notes for graduate courses by the authors at Stanford University, the final material extending well beyond the scope of these courses. By including preparatory chapters on topics such as potential theory and functional analysis, we have attempted to make the work accessible to a broad spectrum of readers. Above all, we hope the readers of this book will gain an appreciation of the multitude of ingenious barehanded techniques that have been developed in the study of elliptic equations and have become part of the repertoire of analysis. Many individuals have assisted us during the evolution of this work over the past several years. In particular, we are grateful for the valuable discussions with L. M. Simon and his contributions in Sections 15.4 to 15.8; for the helpful comments and corrections of J. M. Cross, A. S. Geue, J. Nash, P. Trudinger and B. Turkington; for the contributions of G. Williams in Section 10.5 and of A. S. Geue in Section 10.6; and for the impeccably typed manuscript which resulted from the dedicated efforts oflsolde Field at Stanford and Anna Zalucki at Canberra. The research of the authors connected with this volume was supported in part by the National Science Foundation.
Author | : Jiri Lebl |
Publisher | : |
Total Pages | : 468 |
Release | : 2019-11-13 |
Genre | : |
ISBN | : 9781706230236 |
Version 6.0. An introductory course on differential equations aimed at engineers. The book covers first order ODEs, higher order linear ODEs, systems of ODEs, Fourier series and PDEs, eigenvalue problems, the Laplace transform, and power series methods. It has a detailed appendix on linear algebra. The book was developed and used to teach Math 286/285 at the University of Illinois at Urbana-Champaign, and in the decade since, it has been used in many classrooms, ranging from small community colleges to large public research universities. See https: //www.jirka.org/diffyqs/ for more information, updates, errata, and a list of classroom adoptions.
Author | : Giuseppe Da Prato |
Publisher | : Cambridge University Press |
Total Pages | : 206 |
Release | : 2002-07-25 |
Genre | : Mathematics |
ISBN | : 9780521777292 |
Second order linear parabolic and elliptic equations arise frequently in mathematics and other disciplines. For example parabolic equations are to be found in statistical mechanics and solid state theory, their infinite dimensional counterparts are important in fluid mechanics, mathematical finance and population biology, whereas nonlinear parabolic equations arise in control theory. Here the authors present a state of the art treatment of the subject from a new perspective. The main tools used are probability measures in Hilbert and Banach spaces and stochastic evolution equations. There is then a discussion of how the results in the book can be applied to control theory. This area is developing very rapidly and there are numerous notes and references that point the reader to more specialised results not covered in the book. Coverage of some essential background material will help make the book self-contained and increase its appeal to those entering the subject.
Author | : Alouf Jirari |
Publisher | : American Mathematical Soc. |
Total Pages | : 154 |
Release | : 1995 |
Genre | : Mathematics |
ISBN | : 082180359X |
This memoir presents machinery for analyzing many discrete physical situations, and should be of interest to physicists, engineers, and mathematicians. We develop a theory for regular and singular Sturm-Liouville boundary value problems for difference equations, generalizing many of the known results for differential equations. We discuss the self-adjointness of these problems as well as their abstract spectral resolution in the appropriate [italic capital]L2 setting, and give necessary and sufficient conditions for a second-order difference operator to be self-adjoint and have orthogonal polynomials as eigenfunctions.
Author | : Gary M. Lieberman |
Publisher | : World Scientific |
Total Pages | : 472 |
Release | : 1996 |
Genre | : Mathematics |
ISBN | : 9789810228835 |
Introduction. Maximum principles. Introduction to the theory of weak solutions. Hölder estimates. Existence, uniqueness, and regularity of solutions. Further theory of weak solutions. Strong solutions. Fixed point theorems and their applications. Comparison and maximum principles. Boundary gradient estimates. Global and local gradient bounds. Hölder gradient estimates and existence theorems. The oblique derivative problem for quasilinear parabolic equations. Fully nonlinear equations. Introduction. Monge-Ampère and Hessian equations.
Author | : J. Grifone |
Publisher | : World Scientific |
Total Pages | : 236 |
Release | : 2000 |
Genre | : Mathematics |
ISBN | : 9789810237349 |
The inverse problem of the calculus of variations was first studied by Helmholtz in 1887 and it is entirely solved for the differential operators, but only a few results are known in the more general case of differential equations. This book looks at second-order differential equations and asks if they can be written as Euler-Lagrangian equations. If the equations are quadratic, the problem reduces to the characterization of the connections which are Levi-Civita for some Riemann metric.To solve the inverse problem, the authors use the formal integrability theory of overdetermined partial differential systems in the Spencer-Quillen-Goldschmidt version. The main theorems of the book furnish a complete illustration of these techniques because all possible situations appear: involutivity, 2-acyclicity, prolongation, computation of Spencer cohomology, computation of the torsion, etc.
Author | : R.P. Agarwal |
Publisher | : Springer Science & Business Media |
Total Pages | : 700 |
Release | : 2002-07-31 |
Genre | : Mathematics |
ISBN | : 9781402008023 |
In this monograph, the authors present a compact, thorough, systematic, and self-contained oscillation theory for linear, half-linear, superlinear, and sublinear second-order ordinary differential equations. An important feature of this monograph is the illustration of several results with examples of current interest. This book will stimulate further research into oscillation theory. This book is written at a graduate level, and is intended for university libraries, graduate students, and researchers working in the field of ordinary differential equations.
Author | : Richard Bellman |
Publisher | : World Scientific |
Total Pages | : 180 |
Release | : 1984 |
Genre | : Mathematics |
ISBN | : 9789971966737 |
The classical theory of the Laplace Transform can open many new avenues when viewed from a modern, semi-classical point of view. In this book, the author re-examines the Laplace Transform and presents a study of many of the applications to differential equations, differential-difference equations and the renewal equation.
Author | : Kevin M. Lynch |
Publisher | : Cambridge University Press |
Total Pages | : 545 |
Release | : 2017-05-25 |
Genre | : Computers |
ISBN | : 1107156300 |
A modern and unified treatment of the mechanics, planning, and control of robots, suitable for a first course in robotics.