Schrödinger Operators, Markov Semigroups, Wavelet Analysis, Operator Algebras

Schrödinger Operators, Markov Semigroups, Wavelet Analysis, Operator Algebras
Author: Michael Demuth
Publisher: De Gruyter Akademie Forschung
Total Pages: 414
Release: 1996
Genre: Mathematics
ISBN:

The analysis of partial differential equations has stimulated large areas of research in mathematical physics, harmonic analysis, and operator theory. The present volume illuminates the depth and variety of these interactions. It begins with a survey on the use of semiclassical analysis and maximum-principle techniques in statistical mechanics. There follows an article presenting the perturbation theory for generators of Markov semigroups acting on Lp. The third contribution provides a self-contained introduction to continuous wavelet analysis, including its relations to function spaces and microlocal regularity; this is particularly topical, as wavelet methods have been applied with great success in the past decade to problems in harmonic and numerical analysis as well as in diverse fields of engineering. The final section explores pseudo-differential analysis on singular configurations, with special emphasis on C-algebra techniques, Mellin operators, and analytical index formulas.

Pseudo Differential Operators & Markov Processes: Fourier analysis and semigroups

Pseudo Differential Operators & Markov Processes: Fourier analysis and semigroups
Author: Niels Jacob
Publisher: World Scientific
Total Pages: 517
Release: 2001
Genre: Mathematics
ISBN: 1860942938

This work covers two topics in detail: Fourier analysis, with emphasis on positivity and also on some function spaces and multiplier theorems; and one-parameter operator semigroups with emphasis on Feller semigroups and Lp-sub-Markovian semigroups. In addition, Dirichlet forms are treated.

Pseudo Differential Operators And Markov Processes, Volume I: Fourier Analysis And Semigroups

Pseudo Differential Operators And Markov Processes, Volume I: Fourier Analysis And Semigroups
Author: Niels Jacob
Publisher: World Scientific
Total Pages: 517
Release: 2001-11-28
Genre: Mathematics
ISBN: 178326134X

After recalling essentials of analysis — including functional analysis, convexity, distribution theory and interpolation theory — this book handles two topics in detail: Fourier analysis, with emphasis on positivity and also on some function spaces and multiplier theorems; and one-parameter operator semigroups with emphasis on Feller semigroups and Lp-sub-Markovian semigroups. In addition, Dirichlet forms are treated. The book is self-contained and offers new material originated by the author and his students./a

Microlocal Analysis and Spectral Theory

Microlocal Analysis and Spectral Theory
Author: Luigi Rodino
Publisher: Springer Science & Business Media
Total Pages: 449
Release: 2012-12-06
Genre: Mathematics
ISBN: 9401156263

The NATO Advanced Study Institute "Microlocal Analysis and Spectral The ory" was held in Tuscany (Italy) at Castelvecchio Pascoli, in the district of Lucca, hosted by the international vacation center "11 Ciocco" , from September 23 to October 3, 1996. The Institute recorded the considerable progress realized recently in the field of Microlocal Analysis. In a broad sense, Microlocal Analysis is the modern version of the classical Fourier technique in solving partial differential equa tions, where now the localization proceeding takes place with respect to the dual variables too. Precisely, through the tools of pseudo-differential operators, wave-front sets and Fourier integral operators, the general theory of the lin ear partial differential equations is now reaching a mature form, in the frame of Schwartz distributions or other generalized functions. At the same time, Microlocal Analysis has grown up into a definite and independent part of Math ematical Analysis, with other applications all around Mathematics and Physics, one major theme being Spectral Theory for Schrodinger equation in Quantum Mechanics.

Semi-bounded Differential Operators, Contractive Semigroups and Beyond

Semi-bounded Differential Operators, Contractive Semigroups and Beyond
Author: Alberto Cialdea
Publisher: Springer
Total Pages: 262
Release: 2014-07-21
Genre: Mathematics
ISBN: 331904558X

In the present book the conditions are studied for the semi-boundedness of partial differential operators which is interpreted in different ways. Nowadays one knows rather much about L2-semibounded differential and pseudo-differential operators, although their complete characterization in analytic terms causes difficulties even for rather simple operators. Until recently almost nothing was known about analytic characterizations of semi-boundedness for differential operators in other Hilbert function spaces and in Banach function spaces. The goal of the present book is to partially fill this gap. Various types of semi-boundedness are considered and some relevant conditions which are either necessary and sufficient or best possible in a certain sense are given. Most of the results reported in this book are due to the authors.

Aspects of Boundary Problems in Analysis and Geometry

Aspects of Boundary Problems in Analysis and Geometry
Author: Juan Gil
Publisher: Birkhäuser
Total Pages: 574
Release: 2012-12-06
Genre: Mathematics
ISBN: 3034878508

Boundary problems constitute an essential field of common mathematical interest, they lie in the center of research activities both in analysis and geometry. This book encompasses material from both disciplines, and focuses on their interactions which are particularly apparent in this field. Moreover, the survey style of the contributions makes the topics accessible to a broad audience with a background in analysis or geometry, and enables the reader to get a quick overview.

Analysis, Partial Differential Equations and Applications

Analysis, Partial Differential Equations and Applications
Author: Alberto Cialdea
Publisher: Springer Science & Business Media
Total Pages: 342
Release: 2010-01-14
Genre: Mathematics
ISBN: 3764398981

This volume includes several invited lectures given at the International Workshop "Analysis, Partial Differential Equations and Applications", held at the Mathematical Department of Sapienza University of Rome, on the occasion of the 70th birthday of Vladimir G. Maz'ya, a renowned mathematician and one of the main experts in the field of pure and applied analysis. The book aims at spreading the seminal ideas of Maz'ya to a larger audience in faculties of sciences and engineering. In fact, all articles were inspired by previous works of Maz'ya in several frameworks, including classical and contemporary problems connected with boundary and initial value problems for elliptic, hyperbolic and parabolic operators, Schrödinger-type equations, mathematical theory of elasticity, potential theory, capacity, singular integral operators, p-Laplacians, functional analysis, and approximation theory. Maz'ya is author of more than 450 papers and 20 books. In his long career he obtained many astonishing and frequently cited results in the theory of harmonic potentials on non-smooth domains, potential and capacity theories, spaces of functions with bounded variation, maximum principle for higher-order elliptic equations, Sobolev multipliers, approximate approximations, etc. The topics included in this volume will be particularly useful to all researchers who are interested in achieving a deeper understanding of the large expertise of Vladimir Maz'ya.

Elliptic Theory on Singular Manifolds

Elliptic Theory on Singular Manifolds
Author: Vladimir E. Nazaikinskii
Publisher: CRC Press
Total Pages: 372
Release: 2005-08-12
Genre: Mathematics
ISBN: 1420034979

The analysis and topology of elliptic operators on manifolds with singularities are much more complicated than in the smooth case and require completely new mathematical notions and theories. While there has recently been much progress in the field, many of these results have remained scattered in journals and preprints. Starting from an ele

Nonlinear Hyperbolic Equations, Spectral Theory, and Wavelet Transformations

Nonlinear Hyperbolic Equations, Spectral Theory, and Wavelet Transformations
Author: Sergio Albeverio
Publisher: Birkhäuser
Total Pages: 444
Release: 2012-12-06
Genre: Mathematics
ISBN: 3034880731

This volume focuses on recent developments in non-linear and hyperbolic equations. It will be a most valuable resource for researchers in applied mathematics, the theory of wavelets, and in mathematical and theoretical physics. Nine up-to-date contributions have been written on invitation by experts in the respective fields. The book is the third volume of the subseries "Advances in Partial Differential Equations".

Hypoelliptic Estimates and Spectral Theory for Fokker-Planck Operators and Witten Laplacians

Hypoelliptic Estimates and Spectral Theory for Fokker-Planck Operators and Witten Laplacians
Author: Francis Nier
Publisher: Springer
Total Pages: 215
Release: 2005-01-17
Genre: Mathematics
ISBN: 3540315535

There has recently been a renewal of interest in Fokker-Planck operators, motivated by problems in statistical physics, in kinetic equations, and differential geometry. Compared to more standard problems in the spectral theory of partial differential operators, those operators are not self-adjoint and only hypoelliptic. The aim of the analysis is to give, as generally as possible, an accurate qualitative and quantitative description of the exponential return to the thermodynamical equilibrium. While exploring and improving recent results in this direction, this volume proposes a review of known techniques on: the hypoellipticity of polynomial of vector fields and its global counterpart, the global Weyl-Hörmander pseudo-differential calculus, the spectral theory of non-self-adjoint operators, the semi-classical analysis of Schrödinger-type operators, the Witten complexes, and the Morse inequalities.