SAS® Software Companion for Sampling

SAS® Software Companion for Sampling
Author: Sharon L. Lohr
Publisher: CRC Press
Total Pages: 247
Release: 2021-11-30
Genre: Mathematics
ISBN: 1000479714

The SAS® Software Companion for Sampling: Design and Analysis, designed to be read alongside Sampling: Design and Analysis, Third Edition by Sharon L. Lohr (SDA; 2022, CRC Press), shows how to use the survey selection and analysis procedures of SAS® software to perform calculations for the examples in SDA. No prior experience with SAS software is needed. Chapter 1 tells you how to access the software, introduces basic features, and helps you get started with analyzing data. Each subsequent chapter provides step-by-step guidance for working through the data examples in the corresponding chapter of SDA, with code, output, and interpretation. Tips and warnings help you develop good programming practices and avoid common survey data analysis errors. Features of the SAS software procedures are introduced as they are needed so you can see how each type of sample is selected and analyzed. Each chapter builds on the knowledge developed earlier for simpler designs; after finishing the book, you will know how to use SAS software to select and analyze almost any type of probability sample. All code is available on the book website and is easily adapted for your own survey data analyses. The website also contains all data sets from the examples and exercises in SDA to help you develop your skills through analyzing survey data from social and public opinion research, public health, crime, education, business, agriculture, and ecology

Sampling

Sampling
Author: Sharon L. Lohr
Publisher: CRC Press
Total Pages: 678
Release: 2021-11-30
Genre: Mathematics
ISBN: 1000478238

"The level is appropriate for an upper-level undergraduate or graduate-level statistics major. Sampling: Design and Analysis (SDA) will also benefit a non-statistics major with a desire to understand the concepts of sampling from a finite population. A student with patience to delve into the rigor of survey statistics will gain even more from the content that SDA offers. The updates to SDA have potential to enrich traditional survey sampling classes at both the undergraduate and graduate levels. The new discussions of low response rates, non-probability surveys, and internet as a data collection mode hold particular value, as these statistical issues have become increasingly important in survey practice in recent years... I would eagerly adopt the new edition of SDA as the required textbook." (Emily Berg, Iowa State University) What is the unemployment rate? What is the total area of land planted with soybeans? How many persons have antibodies to the virus causing COVID-19? Sampling: Design and Analysis, Third Edition shows you how to design and analyze surveys to answer these and other questions. This authoritative text, used as a standard reference by numerous survey organizations, teaches the principles of sampling with examples from social sciences, public opinion research, public health, business, agriculture, and ecology. Readers should be familiar with concepts from an introductory statistics class including probability and linear regression; optional sections contain statistical theory for readers familiar with mathematical statistics. The third edition, thoroughly revised to incorporate recent research and applications, includes a new chapter on nonprobability samples—when to use them and how to evaluate their quality. More than 200 new examples and exercises have been added to the already extensive sets in the second edition. SDA’s companion website contains data sets, computer code, and links to two free downloadable supplementary books (also available in paperback) that provide step-by-step guides—with code, annotated output, and helpful tips—for working through the SDA examples. Instructors can use either R or SAS® software. SAS® Software Companion for Sampling: Design and Analysis, Third Edition by Sharon L. Lohr (2022, CRC Press) R Companion for Sampling: Design and Analysis, Third Edition by Yan Lu and Sharon L. Lohr (2022, CRC Press)

R Companion for Sampling

R Companion for Sampling
Author: Yan Lu
Publisher: CRC Press
Total Pages: 222
Release: 2021-11-24
Genre: Mathematics
ISBN: 1000482057

The R Companion for Sampling: Design and Analysis, designed to be read alongside Sampling: Design and Analysis, Third Edition by Sharon L. Lohr (SDA; 2022, CRC Press), shows how to use functions in base R and contributed packages to perform calculations for the examples in SDA. No prior experience with R is needed. Chapter 1 tells you how to obtain R and RStudio, introduces basic features of the R statistical software environment, and helps you get started with analyzing data. Each subsequent chapter provides step-by-step guidance for working through the data examples in the corresponding chapter of SDA, with code, output, and interpretation. Tips and warnings help you develop good programming practices and avoid common survey data analysis errors. R features and functions are introduced as they are needed so you can see how each type of sample is selected and analyzed. Each chapter builds on the knowledge developed earlier for simpler designs; after finishing the book, you will know how to use R to select and analyze almost any type of probability sample. All R code and data sets used in this book are available online to help you develop your skills analyzing survey data from social and public opinion research, public health, crime, education, business, agriculture, and ecology.

Sampling

Sampling
Author: Sharon L. Lohr
Publisher: CRC Press
Total Pages: 611
Release: 2019-04-08
Genre: Mathematics
ISBN: 1000022080

This edition is a reprint of the second edition published by Cengage Learning, Inc. Reprinted with permission. What is the unemployment rate? How many adults have high blood pressure? What is the total area of land planted with soybeans? Sampling: Design and Analysis tells you how to design and analyze surveys to answer these and other questions. This authoritative text, used as a standard reference by numerous survey organizations, teaches sampling using real data sets from social sciences, public opinion research, medicine, public health, economics, agriculture, ecology, and other fields. The book is accessible to students from a wide range of statistical backgrounds. By appropriate choice of sections, it can be used for a graduate class for statistics students or for a class with students from business, sociology, psychology, or biology. Readers should be familiar with concepts from an introductory statistics class including linear regression; optional sections contain the statistical theory, for readers who have studied mathematical statistics. Distinctive features include: More than 450 exercises. In each chapter, Introductory Exercises develop skills, Working with Data Exercises give practice with data from surveys, Working with Theory Exercises allow students to investigate statistical properties of estimators, and Projects and Activities Exercises integrate concepts. A solutions manual is available. An emphasis on survey design. Coverage of simple random, stratified, and cluster sampling; ratio estimation; constructing survey weights; jackknife and bootstrap; nonresponse; chi-squared tests and regression analysis. Graphing data from surveys. Computer code using SAS® software. Online supplements containing data sets, computer programs, and additional material. Sharon Lohr, the author of Measuring Crime: Behind the Statistics, has published widely about survey sampling and statistical methods for education, public policy, law, and crime. She has been recognized as Fellow of the American Statistical Association, elected member of the International Statistical Institute, and recipient of the Gertrude M. Cox Statistics Award and the Deming Lecturer Award. Formerly Dean’s Distinguished Professor of Statistics at Arizona State University and a Vice President at Westat, she is now a freelance statistical consultant and writer. Visit her website at www.sharonlohr.com.

Using SAS for Data Management, Statistical Analysis, and Graphics

Using SAS for Data Management, Statistical Analysis, and Graphics
Author: Ken Kleinman
Publisher: CRC Press
Total Pages: 308
Release: 2010-07-28
Genre: Mathematics
ISBN: 1439827583

Quick and Easy Access to Key Elements of Documentation Includes worked examples across a wide variety of applications, tasks, and graphicsA unique companion for statistical coders, Using SAS for Data Management, Statistical Analysis, and Graphics presents an easy way to learn how to perform an analytical task in SAS, without having to navigate thro

Practical Data Analysis with JMP, Third Edition

Practical Data Analysis with JMP, Third Edition
Author: Robert Carver
Publisher: SAS Institute
Total Pages: 530
Release: 2019-10-18
Genre: Computers
ISBN: 1642956120

Master the concepts and techniques of statistical analysis using JMP Practical Data Analysis with JMP, Third Edition, highlights the powerful interactive and visual approach of JMP to introduce readers to statistical thinking and data analysis. It helps you choose the best technique for the problem at hand by using real-world cases. It also illustrates best-practice workflow throughout the entire investigative cycle, from asking valuable questions through data acquisition, preparation, analysis, interpretation, and communication of findings. The book can stand on its own as a learning resource for professionals, or it can be used to supplement a college-level textbook for an introductory statistics course. It includes varied examples and problems using real sets of data. Each chapter typically starts with an important or interesting research question that an investigator has pursued. Reflecting the broad applicability of statistical reasoning, the problems come from a wide variety of disciplines, including engineering, life sciences, business, and economics, as well as international and historical examples. Application Scenarios at the end of each chapter challenge you to use your knowledge and skills with data sets that go beyond mere repetition of chapter examples. New in the third edition, chapters have been updated to demonstrate the enhanced capabilities of JMP, including projects, Graph Builder, Query Builder, and Formula Depot.

SAS and R

SAS and R
Author: Ken Kleinman
Publisher: CRC Press
Total Pages: 473
Release: 2014-07-17
Genre: Mathematics
ISBN: 1466584491

An Up-to-Date, All-in-One Resource for Using SAS and R to Perform Frequent Tasks The first edition of this popular guide provided a path between SAS and R using an easy-to-understand, dictionary-like approach. Retaining the same accessible format, SAS and R: Data Management, Statistical Analysis, and Graphics, Second Edition explains how to easily perform an analytical task in both SAS and R, without having to navigate through the extensive, idiosyncratic, and sometimes unwieldy software documentation. The book covers many common tasks, such as data management, descriptive summaries, inferential procedures, regression analysis, and graphics, along with more complex applications. New to the Second Edition This edition now covers RStudio, a powerful and easy-to-use interface for R. It incorporates a number of additional topics, including using application program interfaces (APIs), accessing data through database management systems, using reproducible analysis tools, and statistical analysis with Markov chain Monte Carlo (MCMC) methods and finite mixture models. It also includes extended examples of simulations and many new examples. Enables Easy Mobility between the Two Systems Through the extensive indexing and cross-referencing, users can directly find and implement the material they need. SAS users can look up tasks in the SAS index and then find the associated R code while R users can benefit from the R index in a similar manner. Numerous example analyses demonstrate the code in action and facilitate further exploration. The datasets and code are available for download on the book’s website.

Design and Analysis of Experiments with R

Design and Analysis of Experiments with R
Author: John Lawson
Publisher: CRC Press
Total Pages: 629
Release: 2014-12-17
Genre: Mathematics
ISBN: 1498728480

Design and Analysis of Experiments with R presents a unified treatment of experimental designs and design concepts commonly used in practice. It connects the objectives of research to the type of experimental design required, describes the process of creating the design and collecting the data, shows how to perform the proper analysis of the data,

Cody's Data Cleaning Techniques Using SAS, Third Edition

Cody's Data Cleaning Techniques Using SAS, Third Edition
Author: Ron Cody
Publisher: SAS Institute
Total Pages: 234
Release: 2017-03-15
Genre: Computers
ISBN: 1635260698

Written in Ron Cody's signature informal, tutorial style, this book develops and demonstrates data cleaning programs and macros that you can use as written or modify which will make your job of data cleaning easier, faster, and more efficient. --

Complex Surveys

Complex Surveys
Author: Thomas Lumley
Publisher: John Wiley & Sons
Total Pages: 329
Release: 2011-09-20
Genre: Mathematics
ISBN: 111821093X

A complete guide to carrying out complex survey analysis using R As survey analysis continues to serve as a core component of sociological research, researchers are increasingly relying upon data gathered from complex surveys to carry out traditional analyses. Complex Surveys is a practical guide to the analysis of this kind of data using R, the freely available and downloadable statistical programming language. As creator of the specific survey package for R, the author provides the ultimate presentation of how to successfully use the software for analyzing data from complex surveys while also utilizing the most current data from health and social sciences studies to demonstrate the application of survey research methods in these fields. The book begins with coverage of basic tools and topics within survey analysis such as simple and stratified sampling, cluster sampling, linear regression, and categorical data regression. Subsequent chapters delve into more technical aspects of complex survey analysis, including post-stratification, two-phase sampling, missing data, and causal inference. Throughout the book, an emphasis is placed on graphics, regression modeling, and two-phase designs. In addition, the author supplies a unique discussion of epidemiological two-phase designs as well as probability-weighting for causal inference. All of the book's examples and figures are generated using R, and a related Web site provides the R code that allows readers to reproduce the presented content. Each chapter concludes with exercises that vary in level of complexity, and detailed appendices outline additional mathematical and computational descriptions to assist readers with comparing results from various software systems. Complex Surveys is an excellent book for courses on sampling and complex surveys at the upper-undergraduate and graduate levels. It is also a practical reference guide for applied statisticians and practitioners in the social and health sciences who use statistics in their everyday work.