Ruth Cohen Oral History Interview Code 27281
Download Ruth Cohen Oral History Interview Code 27281 full books in PDF, epub, and Kindle. Read online free Ruth Cohen Oral History Interview Code 27281 ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Alexander A. Samarskii |
Publisher | : CRC Press |
Total Pages | : 368 |
Release | : 2001-12-20 |
Genre | : Mathematics |
ISBN | : 9780415272803 |
Mathematical modeling is becoming increasingly versatile and multi-disciplinary. This text demonstrates the broadness of this field as the authors consider the principles of model construction and use common approaches to build models from a range of subject areas. The book reflects the interests and experiences of the authors, but it explores mathematical modeling across a wide range of applications, from mechanics to social science. A general approach is adopted, where ideas and examples are favored over rigorous mathematical procedures. This insightful book will be of interest to specialists, teachers, and students across a wide range of disciplines..
Author | : Ben Yandell |
Publisher | : CRC Press |
Total Pages | : 506 |
Release | : 2001-12-12 |
Genre | : Mathematics |
ISBN | : 1439864225 |
This eminently readable book focuses on the people of mathematics and draws the reader into their fascinating world. In a monumental address, given to the International Congress of Mathematicians in Paris in 1900, David Hilbert, perhaps the most respected mathematician of his time, developed a blueprint for mathematical research in the new century.
Author | : Steven G. Krantz |
Publisher | : Springer Science & Business Media |
Total Pages | : 257 |
Release | : 2012-12-06 |
Genre | : Computers |
ISBN | : 1461201152 |
Logic is, and should be, the core subject area of modern mathemat ics. The blueprint for twentieth century mathematical thought, thanks to Hilbert and Bourbaki, is the axiomatic development of the subject. As a result, logic plays a central conceptual role. At the same time, mathematical logic has grown into one of the most recondite areas of mathematics. Most of modern logic is inaccessible to all but the special ist. Yet there is a need for many mathematical scientists-not just those engaged in mathematical research-to become conversant with the key ideas of logic. The Handbook of Mathematical Logic, edited by Jon Bar wise, is in point of fact a handbook written by logicians for other mathe maticians. It was, at the time of its writing, encyclopedic, authoritative, and up-to-the-moment. But it was, and remains, a comprehensive and authoritative book for the cognoscenti. The encyclopedic Handbook of Logic in Computer Science by Abramsky, Gabbay, and Maibaum is a wonderful resource for the professional. But it is overwhelming for the casual user. There is need for a book that introduces important logic terminology and concepts to the working mathematical scientist who has only a passing acquaintance with logic. Thus the present work has a different target audience. The intent of this handbook is to present the elements of modern logic, including many current topics, to the reader having only basic mathe matical literacy.
Author | : Yves Nievergelt |
Publisher | : Springer Science & Business Media |
Total Pages | : 425 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 146120125X |
This modern introduction to the foundations of logic and mathematics not only takes theory into account, but also treats in some detail applications that have a substantial impact on everyday life (loans and mortgages, bar codes, public-key cryptography). A first college-level introduction to logic, proofs, sets, number theory, and graph theory, and an excellent self-study reference and resource for instructors.
Author | : Andrei D. Polyanin |
Publisher | : CRC Press |
Total Pages | : 522 |
Release | : 2001-11-15 |
Genre | : Mathematics |
ISBN | : 9780415272674 |
This book contains about 3000 first-order partial differential equations with solutions. New exact solutions to linear and nonlinear equations are included. The text pays special attention to equations of the general form, showing their dependence upon arbitrary functions. At the beginning of each section, basic solution methods for the corresponding types of differential equations are outlined and specific examples are considered. It presents equations and their applications, including differential geometry, nonlinear mechanics, gas dynamics, heat and mass transfer, wave theory and much more. This handbook is an essential reference source for researchers, engineers and students of applied mathematics, mechanics, control theory and the engineering sciences.
Author | : United States. Congress. Senate. Select Committee on Small Business |
Publisher | : |
Total Pages | : 1776 |
Release | : 1975 |
Genre | : Legislative hearings |
ISBN | : |
Author | : Vladmir P. Krainov |
Publisher | : CRC Press |
Total Pages | : 220 |
Release | : 2001-10-18 |
Genre | : Science |
ISBN | : 9780415272391 |
Selected Mathematical Methods in Theoretical Physics shows how a scientist, knowing the answer to a problem intuitively or through experiment, can develop a mathematical method to prove that answer. The approach adopted by the author first involves the formulation of differential or integral equations for describing the physical procession, the basis of more general physical laws. Then the approximate solution of these equations is worked out, using small dimensionless physical parameters, or using numerical parameters for the objects under consideration. The eleven chapters of the book, which can be read in sequence or studied independently of each other, contain many examples of simple physical models, as well as problems for students to solve. This is a supplementary textbook for advanced university students in theoretical physics. It will enrich the knowledge of students who already have a solid grounding in mathematical analysis.
Author | : NARASIMHAN |
Publisher | : Springer Science & Business Media |
Total Pages | : 282 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 1475711069 |
This book is based on a first-year graduate course I gave three times at the University of Chicago. As it was addressed to graduate students who intended to specialize in mathematics, I tried to put the classical theory of functions of a complex variable in context, presenting proofs and points of view which relate the subject to other branches of mathematics. Complex analysis in one variable is ideally suited to this attempt. Of course, the branches of mathema tics one chooses, and the connections one makes, must depend on personal taste and knowledge. My own leaning towards several complex variables will be apparent, especially in the notes at the end of the different chapters. The first three chapters deal largely with classical material which is avai lable in the many books on the subject. I have tried to present this material as efficiently as I could, and, even here, to show the relationship with other branches of mathematics. Chapter 4 contains a proof of Picard's theorem; the method of proof I have chosen has far-reaching generalizations in several complex variables and in differential geometry. The next two chapters deal with the Runge approximation theorem and its many applications. The presentation here has been strongly influenced by work on several complex variables.
Author | : James B. Forman |
Publisher | : |
Total Pages | : 0 |
Release | : 1950 |
Genre | : Furniture industry and trade |
ISBN | : |
Author | : Stephen C. Milne |
Publisher | : Springer Science & Business Media |
Total Pages | : 150 |
Release | : 2013-11-27 |
Genre | : Mathematics |
ISBN | : 1475754620 |
The problem of representing an integer as a sum of squares of integers is one of the oldest and most significant in mathematics. It goes back at least 2000 years to Diophantus, and continues more recently with the works of Fermat, Euler, Lagrange, Jacobi, Glaisher, Ramanujan, Hardy, Mordell, Andrews, and others. Jacobi's elliptic function approach dates from his epic Fundamenta Nova of 1829. Here, the author employs his combinatorial/elliptic function methods to derive many infinite families of explicit exact formulas involving either squares or triangular numbers, two of which generalize Jacobi's (1829) 4 and 8 squares identities to 4n2 or 4n(n+1) squares, respectively, without using cusp forms such as those of Glaisher or Ramanujan for 16 and 24 squares. These results depend upon new expansions for powers of various products of classical theta functions. This is the first time that infinite families of non-trivial exact explicit formulas for sums of squares have been found. The author derives his formulas by utilizing combinatorics to combine a variety of methods and observations from the theory of Jacobi elliptic functions, continued fractions, Hankel or Turanian determinants, Lie algebras, Schur functions, and multiple basic hypergeometric series related to the classical groups. His results (in Theorem 5.19) generalize to separate infinite families each of the 21 of Jacobi's explicitly stated degree 2, 4, 6, 8 Lambert series expansions of classical theta functions in sections 40-42 of the Fundamental Nova. The author also uses a special case of his methods to give a derivation proof of the two Kac and Wakimoto (1994) conjectured identities concerning representations of a positive integer by sums of 4n2 or 4n(n+1) triangular numbers, respectively. These conjectures arose in the study of Lie algebras and have also recently been proved by Zagier using modular forms. George Andrews says in a preface of this book, `This impressive work will undoubtedly spur others both in elliptic functions and in modular forms to build on these wonderful discoveries.' Audience: This research monograph on sums of squares is distinguished by its diversity of methods and extensive bibliography. It contains both detailed proofs and numerous explicit examples of the theory. This readable work will appeal to both students and researchers in number theory, combinatorics, special functions, classical analysis, approximation theory, and mathematical physics.