Robust Latent Feature Learning For Incomplete Big Data
Download Robust Latent Feature Learning For Incomplete Big Data full books in PDF, epub, and Kindle. Read online free Robust Latent Feature Learning For Incomplete Big Data ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Di Wu |
Publisher | : Springer Nature |
Total Pages | : 119 |
Release | : 2022-12-06 |
Genre | : Computers |
ISBN | : 981198140X |
Incomplete big data are frequently encountered in many industrial applications, such as recommender systems, the Internet of Things, intelligent transportation, cloud computing, and so on. It is of great significance to analyze them for mining rich and valuable knowledge and patterns. Latent feature analysis (LFA) is one of the most popular representation learning methods tailored for incomplete big data due to its high accuracy, computational efficiency, and ease of scalability. The crux of analyzing incomplete big data lies in addressing the uncertainty problem caused by their incomplete characteristics. However, existing LFA methods do not fully consider such uncertainty. In this book, the author introduces several robust latent feature learning methods to address such uncertainty for effectively and efficiently analyzing incomplete big data, including robust latent feature learning based on smooth L1-norm, improving robustness of latent feature learning using L1-norm, improving robustness of latent feature learning using double-space, data-characteristic-aware latent feature learning, posterior-neighborhood-regularized latent feature learning, and generalized deep latent feature learning. Readers can obtain an overview of the challenges of analyzing incomplete big data and how to employ latent feature learning to build a robust model to analyze incomplete big data. In addition, this book provides several algorithms and real application cases, which can help students, researchers, and professionals easily build their models to analyze incomplete big data.
Author | : Luca Oneto |
Publisher | : Springer |
Total Pages | : 402 |
Release | : 2019-04-02 |
Genre | : Computers |
ISBN | : 3030168417 |
This book presents the original articles that have been accepted in the 2019 INNS Big Data and Deep Learning (INNS BDDL) international conference, a major event for researchers in the field of artificial neural networks, big data and related topics, organized by the International Neural Network Society and hosted by the University of Genoa. In 2019 INNS BDDL has been held in Sestri Levante (Italy) from April 16 to April 18. More than 80 researchers from 20 countries participated in the INNS BDDL in April 2019. In addition to regular sessions, INNS BDDL welcomed around 40 oral communications, 6 tutorials have been presented together with 4 invited plenary speakers. This book covers a broad range of topics in big data and deep learning, from theoretical aspects to state-of-the-art applications. This book is directed to both Ph.D. students and Researchers in the field in order to provide a general picture of the state-of-the-art on the topics addressed by the conference.
Author | : Danai Koutra |
Publisher | : Springer Nature |
Total Pages | : 506 |
Release | : 2023-09-17 |
Genre | : Computers |
ISBN | : 3031434242 |
The multi-volume set LNAI 14169 until 14175 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2023, which took place in Turin, Italy, in September 2023. The 196 papers were selected from the 829 submissions for the Research Track, and 58 papers were selected from the 239 submissions for the Applied Data Science Track. The volumes are organized in topical sections as follows: Part I: Active Learning; Adversarial Machine Learning; Anomaly Detection; Applications; Bayesian Methods; Causality; Clustering. Part II: Computer Vision; Deep Learning; Fairness; Federated Learning; Few-shot learning; Generative Models; Graph Contrastive Learning. Part III: Graph Neural Networks; Graphs; Interpretability; Knowledge Graphs; Large-scale Learning. Part IV: Natural Language Processing; Neuro/Symbolic Learning; Optimization; Recommender Systems; Reinforcement Learning; Representation Learning. Part V: Robustness; Time Series; Transfer and Multitask Learning. Part VI: Applied Machine Learning; Computational Social Sciences; Finance; Hardware and Systems; Healthcare & Bioinformatics; Human-Computer Interaction; Recommendation and Information Retrieval. Part VII: Sustainability, Climate, and Environment.- Transportation & Urban Planning.- Demo.
Author | : Albert Bifet |
Publisher | : Springer Nature |
Total Pages | : 517 |
Release | : |
Genre | : |
ISBN | : 3031703812 |
Author | : Petros Nicopolitidis |
Publisher | : Springer Nature |
Total Pages | : 812 |
Release | : 2022-03-03 |
Genre | : Computers |
ISBN | : 3030870499 |
This book presents new research contributions in the above-mentioned fields. Information and communication technologies (ICT) have an integral role in today’s society. Four major driving pillars in the field are computing, which nowadays enables data processing in unprecedented speeds, informatics, which derives information stemming for processed data to feed relevant applications, networking, which interconnects the various computing infrastructures and cybersecurity for addressing the growing concern for secure and lawful use of the ICT infrastructure and services. Its intended readership covers senior undergraduate and graduate students in Computer Science and Engineering and Electrical Engineering, as well as researchers, scientists, engineers, ICT managers, working in the relevant fields and industries.
Author | : Aleš Leonardis |
Publisher | : Springer Nature |
Total Pages | : 555 |
Release | : |
Genre | : |
ISBN | : 303173016X |
Author | : Henry Han |
Publisher | : Springer Nature |
Total Pages | : 234 |
Release | : 2023-01-28 |
Genre | : Computers |
ISBN | : 3031233875 |
This book constitutes the refereed proceedings of the First Southwest Data Science Conference, on The Recent Advances in Transdisciplinary Data Science, SDSC 2022, held in Waco, TX, USA, during March 25–26, 2022. The 14 full papers and 2 short papers included in this book were carefully reviewed and selected from 72 submissions. They were organized in topical sections as follows: Business and social data science; Health and biological data science; Applied data science, artificial intelligence, and data engineering.
Author | : Islem Rekik |
Publisher | : Springer |
Total Pages | : 184 |
Release | : 2018-09-12 |
Genre | : Computers |
ISBN | : 3030003205 |
This book constitutes the refereed proceedings of the First International Workshop on PRedictive Intelligence in MEdicine, PRIME 2018, held in conjunction with MICCAI 2018, in Granada, Spain, in September 2018. The 20 full papers presented were carefully reviewed and selected from 23 submissions. The main aim of the workshop is to propel the advent of predictive models in a broad sense, with application to medical data. Particularly, the workshop will admit papers describing new cutting-edge predictive models and methods that solve challenging problems in the medical field.
Author | : Igor Farkaš |
Publisher | : Springer Nature |
Total Pages | : 705 |
Release | : 2021-09-10 |
Genre | : Computers |
ISBN | : 3030863832 |
The proceedings set LNCS 12891, LNCS 12892, LNCS 12893, LNCS 12894 and LNCS 12895 constitute the proceedings of the 30th International Conference on Artificial Neural Networks, ICANN 2021, held in Bratislava, Slovakia, in September 2021.* The total of 265 full papers presented in these proceedings was carefully reviewed and selected from 496 submissions, and organized in 5 volumes. In this volume, the papers focus on topics such as representation learning, reservoir computing, semi- and unsupervised learning, spiking neural networks, text understanding, transfers and meta learning, and video processing. *The conference was held online 2021 due to the COVID-19 pandemic.
Author | : Ervin Sejdic |
Publisher | : CRC Press |
Total Pages | : 1235 |
Release | : 2018-07-04 |
Genre | : Medical |
ISBN | : 1351061216 |
Within the healthcare domain, big data is defined as any ``high volume, high diversity biological, clinical, environmental, and lifestyle information collected from single individuals to large cohorts, in relation to their health and wellness status, at one or several time points.'' Such data is crucial because within it lies vast amounts of invaluable information that could potentially change a patient's life, opening doors to alternate therapies, drugs, and diagnostic tools. Signal Processing and Machine Learning for Biomedical Big Data thus discusses modalities; the numerous ways in which this data is captured via sensors; and various sample rates and dimensionalities. Capturing, analyzing, storing, and visualizing such massive data has required new shifts in signal processing paradigms and new ways of combining signal processing with machine learning tools. This book covers several of these aspects in two ways: firstly, through theoretical signal processing chapters where tools aimed at big data (be it biomedical or otherwise) are described; and, secondly, through application-driven chapters focusing on existing applications of signal processing and machine learning for big biomedical data. This text aimed at the curious researcher working in the field, as well as undergraduate and graduate students eager to learn how signal processing can help with big data analysis. It is the hope of Drs. Sejdic and Falk that this book will bring together signal processing and machine learning researchers to unlock existing bottlenecks within the healthcare field, thereby improving patient quality-of-life. Provides an overview of recent state-of-the-art signal processing and machine learning algorithms for biomedical big data, including applications in the neuroimaging, cardiac, retinal, genomic, sleep, patient outcome prediction, critical care, and rehabilitation domains. Provides contributed chapters from world leaders in the fields of big data and signal processing, covering topics such as data quality, data compression, statistical and graph signal processing techniques, and deep learning and their applications within the biomedical sphere. This book’s material covers how expert domain knowledge can be used to advance signal processing and machine learning for biomedical big data applications.