Ridge Fuzzy Regression Modelling For Solving Multicollinearity
Download Ridge Fuzzy Regression Modelling For Solving Multicollinearity full books in PDF, epub, and Kindle. Read online free Ridge Fuzzy Regression Modelling For Solving Multicollinearity ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Hyoshin Kim |
Publisher | : Infinite Study |
Total Pages | : 15 |
Release | : |
Genre | : Mathematics |
ISBN | : |
This paper proposes an a-level estimation algorithm for ridge fuzzy regression modeling, addressing the multicollinearity phenomenon in the fuzzy linear regression setting.
Author | : Gholamreza Hesamian |
Publisher | : CRC Press |
Total Pages | : 313 |
Release | : 2022-02-24 |
Genre | : Mathematics |
ISBN | : 1000539776 |
This book presents the most commonly used techniques for the most statistical inferences based on fuzzy data. It brings together many of the main ideas used in statistical inferences in one place, based on fuzzy information including fuzzy data. This book covers a much wider range of topics than a typical introductory text on fuzzy statistics. It includes common topics like elementary probability, descriptive statistics, hypothesis tests, one-way ANOVA, control-charts, reliability systems and regression models. The reader is assumed to know calculus and a little fuzzy set theory. The conventional knowledge of probability and statistics is required. Key Features: Includes example in Mathematica and MATLAB. Contains theoretical and applied exercises for each section. Presents various popular methods for analyzing fuzzy data. The book is suitable for students and researchers in statistics, social science, engineering, and economics, and it can be used at graduate and P.h.D level.
Author | : Janusz Kacprzyk |
Publisher | : Physica |
Total Pages | : 302 |
Release | : 1992-08-27 |
Genre | : Business & Economics |
ISBN | : |
Regression analysis is a relatively simple yet extremely useful and widely employed tool for determining relationship between some variables on the basis of some observed values taken by these variables. Fuzzy regression analysis has been recently deviced to accomodate in the framework of regression analysis vaguely specified data which are omnipresent in many applications, notably in all areas where human judgements are used. Fuzzy sets theory provides here proper tools. This book is a collection of papers written by virtually all major contributors to fuzzy regression. Its main issue is that vague, imprecise, etc. data may now be used in regression analysis. This is new. Apart from this it gives an extensive coverage of the whole field of fuzzy regression, both in a strictly mathematical and applicational perspective. Most approaches are algorithmic, and can be readily implemented. Information on software is provided.
Author | : Michael Panik |
Publisher | : CRC Press |
Total Pages | : 832 |
Release | : 2009-04-30 |
Genre | : Mathematics |
ISBN | : 1420091980 |
Regression Modeling: Methods, Theory, and Computation with SAS provides an introduction to a diverse assortment of regression techniques using SAS to solve a wide variety of regression problems. The author fully documents the SAS programs and thoroughly explains the output produced by the programs.The text presents the popular ordinary least square
Author | : Larry D. Schroeder |
Publisher | : SAGE Publications |
Total Pages | : 122 |
Release | : 2016-11-08 |
Genre | : Social Science |
ISBN | : 1506361617 |
Understanding Regression Analysis: An Introductory Guide by Larry D. Schroeder, David L. Sjoquist, and Paula E. Stephan presents the fundamentals of regression analysis, from its meaning to uses, in a concise, easy-to-read, and non-technical style. It illustrates how regression coefficients are estimated, interpreted, and used in a variety of settings within the social sciences, business, law, and public policy. Packed with applied examples and using few equations, the book walks readers through elementary material using a verbal, intuitive interpretation of regression coefficients, associated statistics, and hypothesis tests. The Second Edition features updated examples and new references to modern software output.
Author | : Andrew Gelman |
Publisher | : Cambridge University Press |
Total Pages | : 551 |
Release | : 2021 |
Genre | : Business & Economics |
ISBN | : 110702398X |
A practical approach to using regression and computation to solve real-world problems of estimation, prediction, and causal inference.
Author | : Quan Xie |
Publisher | : Springer Nature |
Total Pages | : 1454 |
Release | : 2022-01-04 |
Genre | : Technology & Engineering |
ISBN | : 3030896986 |
This book consists of papers on the recent progresses in the state of the art in natural computation, fuzzy systems and knowledge discovery. The book can be useful for researchers, including professors, graduate students, as well as R & D staff in the industry, with a general interest in natural computation, fuzzy systems and knowledge discovery. The work printed in this book was presented at the 2021 17th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD 2021, 24–26 July 2021, Guiyang, China). All papers were rigorously peer-reviewed by experts in the areas.
Author | : Måns Thulin |
Publisher | : CRC Press |
Total Pages | : 0 |
Release | : 2024-08-20 |
Genre | : Mathematics |
ISBN | : 9781032512440 |
The past decades have transformed the world of statistical data analysis, with new methods, new types of data, and new computational tools. Modern Statistics with R introduces you to key parts of this modern statistical toolkit. It teaches you: Data wrangling - importing, formatting, reshaping, merging, and filtering data in R. Exploratory data analysis - using visualisations and multivariate techniques to explore datasets. Statistical inference - modern methods for testing hypotheses and computing confidence intervals. Predictive modelling - regression models and machine learning methods for prediction, classification, and forecasting. Simulation - using simulation techniques for sample size computations and evaluations of statistical methods. Ethics in statistics - ethical issues and good statistical practice. R programming - writing code that is fast, readable, and (hopefully!) free from bugs. No prior programming experience is necessary. Clear explanations and examples are provided to accommodate readers at all levels of familiarity with statistical principles and coding practices. A basic understanding of probability theory can enhance comprehension of certain concepts discussed within this book. In addition to plenty of examples, the book includes more than 200 exercises, with fully worked solutions available at: www.modernstatisticswithr.com.
Author | : Richard McElreath |
Publisher | : CRC Press |
Total Pages | : 488 |
Release | : 2018-01-03 |
Genre | : Mathematics |
ISBN | : 1315362619 |
Statistical Rethinking: A Bayesian Course with Examples in R and Stan builds readers’ knowledge of and confidence in statistical modeling. Reflecting the need for even minor programming in today’s model-based statistics, the book pushes readers to perform step-by-step calculations that are usually automated. This unique computational approach ensures that readers understand enough of the details to make reasonable choices and interpretations in their own modeling work. The text presents generalized linear multilevel models from a Bayesian perspective, relying on a simple logical interpretation of Bayesian probability and maximum entropy. It covers from the basics of regression to multilevel models. The author also discusses measurement error, missing data, and Gaussian process models for spatial and network autocorrelation. By using complete R code examples throughout, this book provides a practical foundation for performing statistical inference. Designed for both PhD students and seasoned professionals in the natural and social sciences, it prepares them for more advanced or specialized statistical modeling. Web Resource The book is accompanied by an R package (rethinking) that is available on the author’s website and GitHub. The two core functions (map and map2stan) of this package allow a variety of statistical models to be constructed from standard model formulas.
Author | : A. Stewart Fotheringham |
Publisher | : John Wiley & Sons |
Total Pages | : 282 |
Release | : 2003-02-21 |
Genre | : Science |
ISBN | : 0470855258 |
Geographical Weighted Regression (GWR) is a new local modelling technique for analysing spatial analysis. This technique allows local as opposed to global models of relationships to be measured and mapped. This is the first and only book on this technique, offering comprehensive coverage on this new 'hot' topic in spatial analysis. * Provides step-by-step examples of how to use the GWR model using data sets and examples on issues such as house price determinants, educational attainment levels and school performance statistics * Contains a broad discussion of and basic concepts on GWR through to ideas on statistical inference for GWR models * uniquely features accompanying author-written software that allows users to undertake sophisticated and complex forms of GWR within a user-friendly, Windows-based, front-end (see book for details).