Resonance And Bifurcation To Chaos In Pendulum

Resonance And Bifurcation To Chaos In Pendulum
Author: Albert C J Luo
Publisher: World Scientific
Total Pages: 251
Release: 2017-12-15
Genre: Science
ISBN: 9813231696

A periodically forced mathematical pendulum is one of the typical and popular nonlinear oscillators that possess complex and rich dynamical behaviors. Although the pendulum is one of the simplest nonlinear oscillators, yet, until now, we are still not able to undertake a systematical study of periodic motions to chaos in such a simplest system due to lack of suitable mathematical methods and computational tools. To understand periodic motions and chaos in the periodically forced pendulum, the perturbation method has been adopted. One could use the Taylor series to expend the sinusoidal function to the polynomial nonlinear terms, followed by traditional perturbation methods to obtain the periodic motions of the approximated differential system.This book discusses Hamiltonian chaos and periodic motions to chaos in pendulums. This book first detects and discovers chaos in resonant layers and bifurcation trees of periodic motions to chaos in pendulum in the comprehensive fashion, which is a base to understand the behaviors of nonlinear dynamical systems, as a results of Hamiltonian chaos in the resonant layers and bifurcation trees of periodic motions to chaos. The bifurcation trees of travelable and non-travelable periodic motions to chaos will be presented through the periodically forced pendulum.

Global Transversality, Resonance and Chaotic Dynamics

Global Transversality, Resonance and Chaotic Dynamics
Author: Albert C. J. Luo
Publisher: World Scientific
Total Pages: 461
Release: 2008
Genre: Science
ISBN: 9812771115

This unique book presents a different point of view on the fundamental theory of global transversality, resonance and chaotic dynamics in n-dimensional nonlinear dynamic systems. The methodology and techniques presented in this book are applicable to nonlinear dynamical systems in general. This book provides useful tools for analytical and numerical predictions of chaos in nonlinear Hamiltonian and dissipative systems. All theoretical results are strictly proved. However, the ideas presented in this book are less formal and rigorous in an informal and lively manner. The author hopes the initial ideas may give some inspirations in the field of nonlinear dynamics. With physical concepts, the author also used the simple, mathematical language to write this book. Therefore, this book is very readable, which can be either a textbook for senior undergraduate and graduate students or a reference book for researches in nonlinear dynamics.

Introduction To Nonlinear Dynamics For Physicists

Introduction To Nonlinear Dynamics For Physicists
Author: Henry D I Abarbanel
Publisher: World Scientific
Total Pages: 170
Release: 1993-06-23
Genre: Science
ISBN: 9814504122

This series of lectures aims to address three main questions that anyone interested in the study of nonlinear dynamics should ask and ponder over. What is nonlinear dynamics and how does it differ from linear dynamics which permeates all familiar textbooks? Why should the physicist study nonlinear systems and leave the comfortable territory of linearity? How can one progress in the study of nonlinear systems both in the analysis of these systems and in learning about new systems from observing their experimental behavior? While it is impossible to answer these questions in the finest detail, this series of lectures nonetheless successfully points the way for the interested reader. Other useful problems have also been incorporated as a study guide. By presenting both substantial qualitative information about phenomena in nonlinear systems and at the same time sufficient quantitative material, the author hopes that readers would learn how to progress on their own in the study of such similar material hereon.

Bifurcation and Chaos

Bifurcation and Chaos
Author: Jan Awrejcewicz
Publisher: Springer Science & Business Media
Total Pages: 281
Release: 2012-12-06
Genre: Science
ISBN: 3642793290

A collection of especially written articles describing the theory and application of nonlinear dynamics to a wide variety of problems encountered in physics and engineering. Each chapter is self-contained and includes an elementary introduction, an exposition of the state of the art, as well as details of recent theoretical, computational and experimental results. Included among the practical systems analysed are: hysteretic circuits, Josephson circuits, magnetic systems, railway dynamics, rotor dynamics and nonlinear dynamics of speech. This book provides important information and ideas for all mathematicians, physicists and engineers whose work in R & D or academia involves the practical consequences of chaotic dynamics.

Quasi-conservative Systems: Cycles, Resonances And Chaos

Quasi-conservative Systems: Cycles, Resonances And Chaos
Author: Albert D Morozov
Publisher: World Scientific
Total Pages: 339
Release: 1998-06-30
Genre: Science
ISBN: 9814498408

This monograph presents the theory of nonconservative systems close to nonlinear integrable ones. With the example of concrete quasi-conservative systems close to nonintegrable ones, the results of numerical analysis are given, and the problem of applying the small parameter method is analyzed.The fundamantal part of the book deals with the investigation of the perturbable systems. Both autonomous and nonautonomous (periodic in time) systems are considered. The global analysis of systems close to the two-dimensional Hamiltonian ones takes a central place in the text. This global analysis includes the solution to problems such as the limit cycles, resonances, and nonregular dynamics. For the autonomous systems, one should note the analysis of the standard (Duffing and pendulum) equations including the solution to the “weakened” 16 Hilbert's problem, and for the nonautonomous systems one should note the mathematical foundations of the theory of synchronization of oscillations (the existence of new regimes, and the passage of invariant tori across the resonance zones under the change of detuning). The presentation is accompanied by examples.

Galileo Unbound

Galileo Unbound
Author: David D. Nolte
Publisher: Oxford University Press
Total Pages: 384
Release: 2018-07-12
Genre: Science
ISBN: 0192528505

Galileo Unbound traces the journey that brought us from Galileo's law of free fall to today's geneticists measuring evolutionary drift, entangled quantum particles moving among many worlds, and our lives as trajectories traversing a health space with thousands of dimensions. Remarkably, common themes persist that predict the evolution of species as readily as the orbits of planets or the collapse of stars into black holes. This book tells the history of spaces of expanding dimension and increasing abstraction and how they continue today to give new insight into the physics of complex systems. Galileo published the first modern law of motion, the Law of Fall, that was ideal and simple, laying the foundation upon which Newton built the first theory of dynamics. Early in the twentieth century, geometry became the cause of motion rather than the result when Einstein envisioned the fabric of space-time warped by mass and energy, forcing light rays to bend past the Sun. Possibly more radical was Feynman's dilemma of quantum particles taking all paths at once — setting the stage for the modern fields of quantum field theory and quantum computing. Yet as concepts of motion have evolved, one thing has remained constant, the need to track ever more complex changes and to capture their essence, to find patterns in the chaos as we try to predict and control our world.

Global Bifurcations and Chaos

Global Bifurcations and Chaos
Author: Stephen Wiggins
Publisher: Springer Science & Business Media
Total Pages: 505
Release: 2013-11-27
Genre: Mathematics
ISBN: 1461210429

Global Bifurcations and Chaos: Analytical Methods is unique in the literature of chaos in that it not only defines the concept of chaos in deterministic systems, but it describes the mechanisms which give rise to chaos (i.e., homoclinic and heteroclinic motions) and derives explicit techniques whereby these mechanisms can be detected in specific systems. These techniques can be viewed as generalizations of Melnikov's method to multi-degree of freedom systems subject to slowly varying parameters and quasiperiodic excitations. A unique feature of the book is that each theorem is illustrated with drawings that enable the reader to build visual pictures of global dynamcis of the systems being described. This approach leads to an enhanced intuitive understanding of the theory.

The Chaotic Pendulum

The Chaotic Pendulum
Author: Moshe Gitterman
Publisher: World Scientific
Total Pages: 157
Release: 2010-09-07
Genre: Science
ISBN: 9814464244

Pendulum is the simplest nonlinear system, which, however, provides the means for the description of different phenomena in Nature that occur in physics, chemistry, biology, medicine, communications, economics and sociology. The chaotic behavior of pendulum is usually associated with the random force acting on a pendulum (Brownian motion). Another type of chaotic motion (deterministic chaos) occurs in nonlinear systems with only few degrees of freedom. This book presents a comprehensive description of these phenomena going on in underdamped and overdamped pendula subject to additive and multiplicative periodic and random forces. No preliminary knowledge, such as complex mathematical or numerical methods, is required from a reader other than undergraduate courses in mathematical physics. A wide group of researchers, along with students and teachers will, thus, benefit from this definitive book on nonlinear dynamics.

Periodic Motions to Chaos in a Spring-Pendulum System

Periodic Motions to Chaos in a Spring-Pendulum System
Author: Yu Guo
Publisher: Springer Nature
Total Pages: 110
Release: 2023-02-06
Genre: Technology & Engineering
ISBN: 3031178831

This book builds on the fundamental understandings, learned in undergraduate engineering and physics in principles of dynamics and control of mechanical systems. The design of real-world mechanical systems and devices becomes far more complex than the spring-pendulum system to which most engineers have been exposed. The authors provide one of the simplest models of nonlinear dynamical systems for learning complex nonlinear dynamical systems. The book addresses the complex challenges of the necessary modeling for the design of machines. The book addresses the methods to create a mechanical system with stable and unstable motions in environments influenced by an array of motion complexity including varied excitation frequencies ranging from periodic motions to chaos. Periodic motions to chaos, in a periodically forced nonlinear spring pendulum system, are presented through the discrete mapping method, and the corresponding stability and bifurcations of periodic motions on the bifurcation trees are presented. Developed semi-analytical solutions of periodical motions to chaos help the reader to understand complex nonlinear dynamical behaviors in nonlinear dynamical systems. Especially, one can use unstable motions rather than stable motions only.

Hamiltonian Chaos Beyond the KAM Theory

Hamiltonian Chaos Beyond the KAM Theory
Author: Albert C. J. Luo
Publisher: Springer Science & Business Media
Total Pages: 312
Release: 2011-01-04
Genre: Science
ISBN: 3642127185

“Hamiltonian Chaos Beyond the KAM Theory: Dedicated to George M. Zaslavsky (1935—2008)” covers the recent developments and advances in the theory and application of Hamiltonian chaos in nonlinear Hamiltonian systems. The book is dedicated to Dr. George Zaslavsky, who was one of three founders of the theory of Hamiltonian chaos. Each chapter in this book was written by well-established scientists in the field of nonlinear Hamiltonian systems. The development presented in this book goes beyond the KAM theory, and the onset and disappearance of chaos in the stochastic and resonant layers of nonlinear Hamiltonian systems are predicted analytically, instead of qualitatively. The book is intended for researchers in the field of nonlinear dynamics in mathematics, physics and engineering. Dr. Albert C.J. Luo is a Professor at Southern Illinois University Edwardsville, USA. Dr. Valentin Afraimovich is a Professor at San Luis Potosi University, Mexico.