Reproducing Kernel Hilbert Spaces In Probability And Statistics
Download Reproducing Kernel Hilbert Spaces In Probability And Statistics full books in PDF, epub, and Kindle. Read online free Reproducing Kernel Hilbert Spaces In Probability And Statistics ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Alain Berlinet |
Publisher | : Springer Science & Business Media |
Total Pages | : 369 |
Release | : 2011-06-28 |
Genre | : Business & Economics |
ISBN | : 1441990968 |
The book covers theoretical questions including the latest extension of the formalism, and computational issues and focuses on some of the more fruitful and promising applications, including statistical signal processing, nonparametric curve estimation, random measures, limit theorems, learning theory and some applications at the fringe between Statistics and Approximation Theory. It is geared to graduate students in Statistics, Mathematics or Engineering, or to scientists with an equivalent level.
Author | : Krikamol Muandet |
Publisher | : |
Total Pages | : 154 |
Release | : 2017-06-28 |
Genre | : Computers |
ISBN | : 9781680832884 |
Provides a comprehensive review of kernel mean embeddings of distributions and, in the course of doing so, discusses some challenging issues that could potentially lead to new research directions. The targeted audience includes graduate students and researchers in machine learning and statistics.
Author | : Vern I. Paulsen |
Publisher | : Cambridge University Press |
Total Pages | : 193 |
Release | : 2016-04-11 |
Genre | : Mathematics |
ISBN | : 1107104092 |
A unique introduction to reproducing kernel Hilbert spaces, covering the fundamental underlying theory as well as a range of applications.
Author | : Howard L. Weinert |
Publisher | : |
Total Pages | : 680 |
Release | : 1982 |
Genre | : Mathematics |
ISBN | : |
Author | : Martin J. Wainwright |
Publisher | : Cambridge University Press |
Total Pages | : 571 |
Release | : 2019-02-21 |
Genre | : Business & Economics |
ISBN | : 1108498027 |
A coherent introductory text from a groundbreaking researcher, focusing on clarity and motivation to build intuition and understanding.
Author | : Ronald Christensen |
Publisher | : Springer Nature |
Total Pages | : 618 |
Release | : 2019-12-20 |
Genre | : Mathematics |
ISBN | : 3030291642 |
This book introduces several topics related to linear model theory, including: multivariate linear models, discriminant analysis, principal components, factor analysis, time series in both the frequency and time domains, and spatial data analysis. This second edition adds new material on nonparametric regression, response surface maximization, and longitudinal models. The book provides a unified approach to these disparate subjects and serves as a self-contained companion volume to the author's Plane Answers to Complex Questions: The Theory of Linear Models. Ronald Christensen is Professor of Statistics at the University of New Mexico. He is well known for his work on the theory and application of linear models having linear structure.
Author | : Roman Vershynin |
Publisher | : Cambridge University Press |
Total Pages | : 299 |
Release | : 2018-09-27 |
Genre | : Business & Economics |
ISBN | : 1108415199 |
An integrated package of powerful probabilistic tools and key applications in modern mathematical data science.
Author | : Fa-Long Luo |
Publisher | : John Wiley & Sons |
Total Pages | : 490 |
Release | : 2020-02-10 |
Genre | : Technology & Engineering |
ISBN | : 1119562252 |
A comprehensive review to the theory, application and research of machine learning for future wireless communications In one single volume, Machine Learning for Future Wireless Communications provides a comprehensive and highly accessible treatment to the theory, applications and current research developments to the technology aspects related to machine learning for wireless communications and networks. The technology development of machine learning for wireless communications has grown explosively and is one of the biggest trends in related academic, research and industry communities. Deep neural networks-based machine learning technology is a promising tool to attack the big challenge in wireless communications and networks imposed by the increasing demands in terms of capacity, coverage, latency, efficiency flexibility, compatibility, quality of experience and silicon convergence. The author – a noted expert on the topic – covers a wide range of topics including system architecture and optimization, physical-layer and cross-layer processing, air interface and protocol design, beamforming and antenna configuration, network coding and slicing, cell acquisition and handover, scheduling and rate adaption, radio access control, smart proactive caching and adaptive resource allocations. Uniquely organized into three categories: Spectrum Intelligence, Transmission Intelligence and Network Intelligence, this important resource: Offers a comprehensive review of the theory, applications and current developments of machine learning for wireless communications and networks Covers a range of topics from architecture and optimization to adaptive resource allocations Reviews state-of-the-art machine learning based solutions for network coverage Includes an overview of the applications of machine learning algorithms in future wireless networks Explores flexible backhaul and front-haul, cross-layer optimization and coding, full-duplex radio, digital front-end (DFE) and radio-frequency (RF) processing Written for professional engineers, researchers, scientists, manufacturers, network operators, software developers and graduate students, Machine Learning for Future Wireless Communications presents in 21 chapters a comprehensive review of the topic authored by an expert in the field.
Author | : Ingo Steinwart |
Publisher | : Springer Science & Business Media |
Total Pages | : 611 |
Release | : 2008-09-15 |
Genre | : Computers |
ISBN | : 0387772421 |
Every mathematical discipline goes through three periods of development: the naive, the formal, and the critical. David Hilbert The goal of this book is to explain the principles that made support vector machines (SVMs) a successful modeling and prediction tool for a variety of applications. We try to achieve this by presenting the basic ideas of SVMs together with the latest developments and current research questions in a uni?ed style. In a nutshell, we identify at least three reasons for the success of SVMs: their ability to learn well with only a very small number of free parameters, their robustness against several types of model violations and outliers, and last but not least their computational e?ciency compared with several other methods. Although there are several roots and precursors of SVMs, these methods gained particular momentum during the last 15 years since Vapnik (1995, 1998) published his well-known textbooks on statistical learning theory with aspecialemphasisonsupportvectormachines. Sincethen,the?eldofmachine learninghaswitnessedintenseactivityinthestudyofSVMs,whichhasspread moreandmoretootherdisciplinessuchasstatisticsandmathematics. Thusit seems fair to say that several communities are currently working on support vector machines and on related kernel-based methods. Although there are many interactions between these communities, we think that there is still roomforadditionalfruitfulinteractionandwouldbegladifthistextbookwere found helpful in stimulating further research. Many of the results presented in this book have previously been scattered in the journal literature or are still under review. As a consequence, these results have been accessible only to a relativelysmallnumberofspecialists,sometimesprobablyonlytopeoplefrom one community but not the others.
Author | : Jonathan H. Manton |
Publisher | : |
Total Pages | : 126 |
Release | : 2015 |
Genre | : Hilbert space |
ISBN | : 9781680830934 |
Reproducing kernel Hilbert spaces are elucidated without assuming prior familiarity with Hilbert spaces. Compared with extant pedagogic material, greater care is placed on motivating the definition of reproducing kernel Hilbert spaces and explaining when and why these spaces are efficacious. The novel viewpoint is that reproducing kernel Hilbert space theory studies extrinsic geometry, associating with each geometric configuration a canonical overdetermined coordinate system. This coordinate system varies continuously with changing geometric configurations, making it well-suited for studying problems whose solutions also vary continuously with changing geometry. This primer can also serve as an introduction to infinite-dimensional linear algebra because reproducing kernel Hilbert spaces have more properties in common with Euclidean spaces than do more general Hilbert spaces.