Representing Finite Groups
Download Representing Finite Groups full books in PDF, epub, and Kindle. Read online free Representing Finite Groups ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Ambar N. Sengupta |
Publisher | : Springer Science & Business Media |
Total Pages | : 383 |
Release | : 2011-12-09 |
Genre | : Mathematics |
ISBN | : 1461412315 |
This graduate textbook presents the basics of representation theory for finite groups from the point of view of semisimple algebras and modules over them. The presentation interweaves insights from specific examples with development of general and powerful tools based on the notion of semisimplicity. The elegant ideas of commutant duality are introduced, along with an introduction to representations of unitary groups. The text progresses systematically and the presentation is friendly and inviting. Central concepts are revisited and explored from multiple viewpoints. Exercises at the end of the chapter help reinforce the material. Representing Finite Groups: A Semisimple Introduction would serve as a textbook for graduate and some advanced undergraduate courses in mathematics. Prerequisites include acquaintance with elementary group theory and some familiarity with rings and modules. A final chapter presents a self-contained account of notions and results in algebra that are used. Researchers in mathematics and mathematical physics will also find this book useful. A separate solutions manual is available for instructors.
Author | : Benjamin Steinberg |
Publisher | : Springer Science & Business Media |
Total Pages | : 166 |
Release | : 2011-10-23 |
Genre | : Mathematics |
ISBN | : 1461407761 |
This book is intended to present group representation theory at a level accessible to mature undergraduate students and beginning graduate students. This is achieved by mainly keeping the required background to the level of undergraduate linear algebra, group theory and very basic ring theory. Module theory and Wedderburn theory, as well as tensor products, are deliberately avoided. Instead, we take an approach based on discrete Fourier Analysis. Applications to the spectral theory of graphs are given to help the student appreciate the usefulness of the subject. A number of exercises are included. This book is intended for a 3rd/4th undergraduate course or an introductory graduate course on group representation theory. However, it can also be used as a reference for workers in all areas of mathematics and statistics.
Author | : J. S. Lomont |
Publisher | : Academic Press |
Total Pages | : 359 |
Release | : 2014-05-12 |
Genre | : Mathematics |
ISBN | : 1483268969 |
Applications of Finite Groups focuses on the applications of finite groups to problems of physics, including representation theory, crystals, wave equations, and nuclear and molecular structures. The book first elaborates on matrices, groups, and representations. Topics include abstract properties, applications, matrix groups, key theorem of representation theory, properties of character tables, simply reducible groups, tensors and invariants, and representations generated by functions. The text then examines applications and subgroups and representations, as well as subduced and induced representations, fermion annihilation and creation operators, crystallographic point groups, proportionality tensors in crystals, and nonrelativistic wave equations. The publication takes a look at space group representations and energy bands, symmetric groups, and applications. Topics include molecular and nuclear structures, multiplet splitting in crystalline electric fields, construction of irreducible representations of the symmetric groups, and reality of representations. The manuscript is a dependable source of data for physicists and researchers interested in the applications of finite groups.
Author | : Peter Webb |
Publisher | : Cambridge University Press |
Total Pages | : 339 |
Release | : 2016-08-19 |
Genre | : Mathematics |
ISBN | : 1107162394 |
This graduate-level text provides a thorough grounding in the representation theory of finite groups over fields and rings. The book provides a balanced and comprehensive account of the subject, detailing the methods needed to analyze representations that arise in many areas of mathematics. Key topics include the construction and use of character tables, the role of induction and restriction, projective and simple modules for group algebras, indecomposable representations, Brauer characters, and block theory. This classroom-tested text provides motivation through a large number of worked examples, with exercises at the end of each chapter that test the reader's knowledge, provide further examples and practice, and include results not proven in the text. Prerequisites include a graduate course in abstract algebra, and familiarity with the properties of groups, rings, field extensions, and linear algebra.
Author | : Ambar N. Sengupta |
Publisher | : Springer Science & Business Media |
Total Pages | : 383 |
Release | : 2011-12-08 |
Genre | : Mathematics |
ISBN | : 1461412307 |
This graduate textbook presents the basics of representation theory for finite groups from the point of view of semisimple algebras and modules over them. The presentation interweaves insights from specific examples with development of general and powerful tools based on the notion of semisimplicity. The elegant ideas of commutant duality are introduced, along with an introduction to representations of unitary groups. The text progresses systematically and the presentation is friendly and inviting. Central concepts are revisited and explored from multiple viewpoints. Exercises at the end of the chapter help reinforce the material. Representing Finite Groups: A Semisimple Introduction would serve as a textbook for graduate and some advanced undergraduate courses in mathematics. Prerequisites include acquaintance with elementary group theory and some familiarity with rings and modules. A final chapter presents a self-contained account of notions and results in algebra that are used. Researchers in mathematics and mathematical physics will also find this book useful. A separate solutions manual is available for instructors.
Author | : Martin Burrow |
Publisher | : Academic Press |
Total Pages | : 196 |
Release | : 2014-05-10 |
Genre | : Mathematics |
ISBN | : 1483258211 |
Representation Theory of Finite Groups is a five chapter text that covers the standard material of representation theory. This book starts with an overview of the basic concepts of the subject, including group characters, representation modules, and the rectangular representation. The succeeding chapters describe the features of representation theory of rings with identity and finite groups. These topics are followed by a discussion of some of the application of the theory of characters, along with some classical theorems. The last chapter deals with the construction of irreducible representations of groups. This book will be of great value to graduate students who wish to acquire some knowledge of representation theory.
Author | : Sergei K. Lando |
Publisher | : Springer Science & Business Media |
Total Pages | : 463 |
Release | : 2013-04-17 |
Genre | : Mathematics |
ISBN | : 3540383611 |
Graphs drawn on two-dimensional surfaces have always attracted researchers by their beauty and by the variety of difficult questions to which they give rise. The theory of such embedded graphs, which long seemed rather isolated, has witnessed the appearance of entirely unexpected new applications in recent decades, ranging from Galois theory to quantum gravity models, and has become a kind of a focus of a vast field of research. The book provides an accessible introduction to this new domain, including such topics as coverings of Riemann surfaces, the Galois group action on embedded graphs (Grothendieck's theory of "dessins d'enfants"), the matrix integral method, moduli spaces of curves, the topology of meromorphic functions, and combinatorial aspects of Vassiliev's knot invariants and, in an appendix by Don Zagier, the use of finite group representation theory. The presentation is concrete throughout, with numerous figures, examples (including computer calculations) and exercises, and should appeal to both graduate students and researchers.
Author | : Marc Cabanes |
Publisher | : Cambridge University Press |
Total Pages | : 457 |
Release | : 2004-01-29 |
Genre | : Mathematics |
ISBN | : 0521825172 |
Author | : Daniel Gorenstein |
Publisher | : Springer Science & Business Media |
Total Pages | : 339 |
Release | : 2013-11-27 |
Genre | : Mathematics |
ISBN | : 1468484974 |
In February 1981, the classification of the finite simple groups (Dl)* was completed,t. * representing one of the most remarkable achievements in the history or mathematics. Involving the combined efforts of several hundred mathematicians from around the world over a period of 30 years, the full proof covered something between 5,000 and 10,000 journal pages, spread over 300 to 500 individual papers. The single result that, more than any other, opened up the field and foreshadowed the vastness of the full classification proof was the celebrated theorem of Walter Feit and John Thompson in 1962, which stated that every finite group of odd order (D2) is solvable (D3)-a statement expressi ble in a single line, yet its proof required a full 255-page issue of the Pacific 10urnal of Mathematics [93]. Soon thereafter, in 1965, came the first new sporadic simple group in over 100 years, the Zvonimir Janko group 1 , to further stimulate the 1 'To make the book as self-contained as possible. we are including definitions of various terms as they occur in the text. However. in order not to disrupt the continuity of the discussion. we have placed them at the end of the Introduction. We denote these definitions by (DI). (D2), (D3). etc.
Author | : James E. Humphreys |
Publisher | : Cambridge University Press |
Total Pages | : 260 |
Release | : 2006 |
Genre | : Mathematics |
ISBN | : 9780521674546 |
A comprehensive treatment of the representation theory of finite groups of Lie type over a field of the defining prime characteristic.