Representation of Lie Groups and Special Functions

Representation of Lie Groups and Special Functions
Author: N.Ja. Vilenkin
Publisher: Springer Science & Business Media
Total Pages: 518
Release: 2013-04-17
Genre: Mathematics
ISBN: 9401728852

In 1991-1993 our three-volume book "Representation of Lie Groups and Spe cial Functions" was published. When we started to write that book (in 1983), editors of "Kluwer Academic Publishers" expressed their wish for the book to be of encyclopaedic type on the subject. Interrelations between representations of Lie groups and special functions are very wide. This width can be explained by existence of different types of Lie groups and by richness of the theory of their rep resentations. This is why the book, mentioned above, spread to three big volumes. Influence of representations of Lie groups and Lie algebras upon the theory of special functions is lasting. This theory is developing further and methods of the representation theory are of great importance in this development. When the book "Representation of Lie Groups and Special Functions" ,vol. 1-3, was under preparation, new directions of the theory of special functions, connected with group representations, appeared. New important results were discovered in the traditional directions. This impelled us to write a continuation of our three-volume book on relationship between representations and special functions. The result of our further work is the present book. The three-volume book, published before, was devoted mainly to studying classical special functions and orthogonal polynomials by means of matrix elements, Clebsch-Gordan and Racah coefficients of group representations and to generaliza tions of classical special functions that were dictated by matrix elements of repre sentations.

Jordan Algebras

Jordan Algebras
Author: Wilhelm Kaup
Publisher: Walter de Gruyter
Total Pages: 353
Release: 2011-05-02
Genre: Mathematics
ISBN: 3110878119

The series is aimed specifically at publishing peer reviewed reviews and contributions presented at workshops and conferences. Each volume is associated with a particular conference, symposium or workshop. These events cover various topics within pure and applied mathematics and provide up-to-date coverage of new developments, methods and applications.

Introduction to Representation Theory

Introduction to Representation Theory
Author: Pavel I. Etingof
Publisher: American Mathematical Soc.
Total Pages: 240
Release: 2011
Genre: Mathematics
ISBN: 0821853511

Very roughly speaking, representation theory studies symmetry in linear spaces. It is a beautiful mathematical subject which has many applications, ranging from number theory and combinatorics to geometry, probability theory, quantum mechanics, and quantum field theory. The goal of this book is to give a ``holistic'' introduction to representation theory, presenting it as a unified subject which studies representations of associative algebras and treating the representation theories of groups, Lie algebras, and quivers as special cases. Using this approach, the book covers a number of standard topics in the representation theories of these structures. Theoretical material in the book is supplemented by many problems and exercises which touch upon a lot of additional topics; the more difficult exercises are provided with hints. The book is designed as a textbook for advanced undergraduate and beginning graduate students. It should be accessible to students with a strong background in linear algebra and a basic knowledge of abstract algebra.

Algebras and Representation Theory

Algebras and Representation Theory
Author: Karin Erdmann
Publisher: Springer
Total Pages: 304
Release: 2018-09-07
Genre: Mathematics
ISBN: 3319919989

This carefully written textbook provides an accessible introduction to the representation theory of algebras, including representations of quivers. The book starts with basic topics on algebras and modules, covering fundamental results such as the Jordan-Hölder theorem on composition series, the Artin-Wedderburn theorem on the structure of semisimple algebras and the Krull-Schmidt theorem on indecomposable modules. The authors then go on to study representations of quivers in detail, leading to a complete proof of Gabriel's celebrated theorem characterizing the representation type of quivers in terms of Dynkin diagrams. Requiring only introductory courses on linear algebra and groups, rings and fields, this textbook is aimed at undergraduate students. With numerous examples illustrating abstract concepts, and including more than 200 exercises (with solutions to about a third of them), the book provides an example-driven introduction suitable for self-study and use alongside lecture courses.

A Taste of Jordan Algebras

A Taste of Jordan Algebras
Author: Kevin McCrimmon
Publisher: Springer Science & Business Media
Total Pages: 584
Release: 2006-05-29
Genre: Mathematics
ISBN: 0387217967

This book describes the history of Jordan algebras and describes in full mathematical detail the recent structure theory for Jordan algebras of arbitrary dimension due to Efim Zel'manov. Jordan algebras crop up in many surprising settings, and find application to a variety of mathematical areas. No knowledge is required beyond standard first-year graduate algebra courses.

Introduction to Lie Algebras and Representation Theory

Introduction to Lie Algebras and Representation Theory
Author: J.E. Humphreys
Publisher: Springer Science & Business Media
Total Pages: 189
Release: 2012-12-06
Genre: Mathematics
ISBN: 1461263980

This book is designed to introduce the reader to the theory of semisimple Lie algebras over an algebraically closed field of characteristic 0, with emphasis on representations. A good knowledge of linear algebra (including eigenvalues, bilinear forms, euclidean spaces, and tensor products of vector spaces) is presupposed, as well as some acquaintance with the methods of abstract algebra. The first four chapters might well be read by a bright undergraduate; however, the remaining three chapters are admittedly a little more demanding. Besides being useful in many parts of mathematics and physics, the theory of semisimple Lie algebras is inherently attractive, combining as it does a certain amount of depth and a satisfying degree of completeness in its basic results. Since Jacobson's book appeared a decade ago, improvements have been made even in the classical parts of the theory. I have tried to incor porate some of them here and to provide easier access to the subject for non-specialists. For the specialist, the following features should be noted: (I) The Jordan-Chevalley decomposition of linear transformations is emphasized, with "toral" subalgebras replacing the more traditional Cartan subalgebras in the semisimple case. (2) The conjugacy theorem for Cartan subalgebras is proved (following D. J. Winter and G. D. Mostow) by elementary Lie algebra methods, avoiding the use of algebraic geometry.

Representation of Lie Groups and Special Functions

Representation of Lie Groups and Special Functions
Author: Naum I︠A︡kovlevich Vilenkin
Publisher: Springer Science & Business Media
Total Pages: 650
Release: 1991-11-30
Genre: Mathematics
ISBN: 9780792314660

One service mathematici has rendered the 'Et moi, ... si j'avait IU comment en revenir. je n'y serais point alle.' human race. It has put common sense back Jules Verne where it belong., on the topmost shelf next to the dusty canister labelled 'discarded non- The series is divergent; therefore we may be sense', Eric T. Bell able to do something with it. O. H eaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other pans and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'el;re of this series."

Modern Trends in Algebra and Representation Theory

Modern Trends in Algebra and Representation Theory
Author: David Jordan
Publisher: Cambridge University Press
Total Pages: 408
Release: 2023-07-31
Genre: Mathematics
ISBN: 1009103474

Expanding upon the material delivered during the LMS Autumn Algebra School 2020, this volume reflects the fruitful connections between different aspects of representation theory. Each survey article addresses a specific subject from a modern angle, beginning with an exploration of the representation theory of associative algebras, followed by the coverage of important developments in Lie theory in the past two decades, before the final sections introduce the reader to three strikingly different aspects of group theory. Written at a level suitable for graduate students and researchers in related fields, this book provides pure mathematicians with a springboard into the vast and growing literature in each area.

Infinite Dimensional Harmonic Analysis Iv: On The Interplay Between Representation Theory, Random Matrices, Special Functions, And Probability - Proceedings Of The Fourth German-japanese Symposium

Infinite Dimensional Harmonic Analysis Iv: On The Interplay Between Representation Theory, Random Matrices, Special Functions, And Probability - Proceedings Of The Fourth German-japanese Symposium
Author: Joachim Hilgert
Publisher: World Scientific
Total Pages: 337
Release: 2008-11-26
Genre: Mathematics
ISBN: 9814470449

The Fourth Conference on Infinite Dimensional Harmonic Analysis brought together experts in harmonic analysis, operator algebras and probability theory. Most of the articles deal with the limit behavior of systems with many degrees of freedom in the presence of symmetry constraints. This volume gives new directions in research bringing together probability theory and representation theory.