Representations And Invariants Of The Classical Groups
Download Representations And Invariants Of The Classical Groups full books in PDF, epub, and Kindle. Read online free Representations And Invariants Of The Classical Groups ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Roe Goodman |
Publisher | : Cambridge University Press |
Total Pages | : 708 |
Release | : 2000-01-13 |
Genre | : Mathematics |
ISBN | : 9780521663489 |
More than half a century has passed since Weyl's 'The Classical Groups' gave a unified picture of invariant theory. This book presents an updated version of this theory together with many of the important recent developments. As a text for those new to the area, this book provides an introduction to the structure and finite-dimensional representation theory of the complex classical groups that requires only an abstract algebra course as a prerequisite. The more advanced reader will find an introduction to the structure and representations of complex reductive algebraic groups and their compact real forms. This book will also serve as a reference for the main results on tensor and polynomial invariants and the finite-dimensional representation theory of the classical groups. It will appeal to researchers in mathematics, statistics, physics and chemistry whose work involves symmetry groups, representation theory, invariant theory and algebraic group theory.
Author | : Roe Goodman |
Publisher | : Springer Science & Business Media |
Total Pages | : 731 |
Release | : 2009-07-30 |
Genre | : Mathematics |
ISBN | : 0387798528 |
Symmetry is a key ingredient in many mathematical, physical, and biological theories. Using representation theory and invariant theory to analyze the symmetries that arise from group actions, and with strong emphasis on the geometry and basic theory of Lie groups and Lie algebras, Symmetry, Representations, and Invariants is a significant reworking of an earlier highly-acclaimed work by the authors. The result is a comprehensive introduction to Lie theory, representation theory, invariant theory, and algebraic groups, in a new presentation that is more accessible to students and includes a broader range of applications. The philosophy of the earlier book is retained, i.e., presenting the principal theorems of representation theory for the classical matrix groups as motivation for the general theory of reductive groups. The wealth of examples and discussion prepares the reader for the complete arguments now given in the general case. Key Features of Symmetry, Representations, and Invariants: (1) Early chapters suitable for honors undergraduate or beginning graduate courses, requiring only linear algebra, basic abstract algebra, and advanced calculus; (2) Applications to geometry (curvature tensors), topology (Jones polynomial via symmetry), and combinatorics (symmetric group and Young tableaux); (3) Self-contained chapters, appendices, comprehensive bibliography; (4) More than 350 exercises (most with detailed hints for solutions) further explore main concepts; (5) Serves as an excellent main text for a one-year course in Lie group theory; (6) Benefits physicists as well as mathematicians as a reference work.
Author | : Claudio Procesi |
Publisher | : Springer Science & Business Media |
Total Pages | : 616 |
Release | : 2007-10-17 |
Genre | : Mathematics |
ISBN | : 0387289291 |
Lie groups has been an increasing area of focus and rich research since the middle of the 20th century. In Lie Groups: An Approach through Invariants and Representations, the author's masterful approach gives the reader a comprehensive treatment of the classical Lie groups along with an extensive introduction to a wide range of topics associated with Lie groups: symmetric functions, theory of algebraic forms, Lie algebras, tensor algebra and symmetry, semisimple Lie algebras, algebraic groups, group representations, invariants, Hilbert theory, and binary forms with fields ranging from pure algebra to functional analysis. By covering sufficient background material, the book is made accessible to a reader with a relatively modest mathematical background. Historical information, examples, exercises are all woven into the text. This unique exposition is suitable for a broad audience, including advanced undergraduates, graduates, mathematicians in a variety of areas from pure algebra to functional analysis and mathematical physics.
Author | : Hermann Weyl |
Publisher | : Princeton University Press |
Total Pages | : 336 |
Release | : 2016-06-02 |
Genre | : Mathematics |
ISBN | : 1400883903 |
In this renowned volume, Hermann Weyl discusses the symmetric, full linear, orthogonal, and symplectic groups and determines their different invariants and representations. Using basic concepts from algebra, he examines the various properties of the groups. Analysis and topology are used wherever appropriate. The book also covers topics such as matrix algebras, semigroups, commutators, and spinors, which are of great importance in understanding the group-theoretic structure of quantum mechanics. Hermann Weyl was among the greatest mathematicians of the twentieth century. He made fundamental contributions to most branches of mathematics, but he is best remembered as one of the major developers of group theory, a powerful formal method for analyzing abstract and physical systems in which symmetry is present. In The Classical Groups, his most important book, Weyl provided a detailed introduction to the development of group theory, and he did it in a way that motivated and entertained his readers. Departing from most theoretical mathematics books of the time, he introduced historical events and people as well as theorems and proofs. One learned not only about the theory of invariants but also when and where they were originated, and by whom. He once said of his writing, "My work always tried to unite the truth with the beautiful, but when I had to choose one or the other, I usually chose the beautiful." Weyl believed in the overall unity of mathematics and that it should be integrated into other fields. He had serious interest in modern physics, especially quantum mechanics, a field to which The Classical Groups has proved important, as it has to quantum chemistry and other fields. Among the five books Weyl published with Princeton, Algebraic Theory of Numbers inaugurated the Annals of Mathematics Studies book series, a crucial and enduring foundation of Princeton's mathematics list and the most distinguished book series in mathematics.
Author | : William Fulton |
Publisher | : Springer Science & Business Media |
Total Pages | : 616 |
Release | : 1991 |
Genre | : Mathematics |
ISBN | : 9780387974958 |
Introducing finite-dimensional representations of Lie groups and Lie algebras, this example-oriented book works from representation theory of finite groups, through Lie groups and Lie algrbras to the finite dimensional representations of the classical groups.
Author | : T.A. Springer |
Publisher | : Springer Science & Business Media |
Total Pages | : 347 |
Release | : 2010-10-12 |
Genre | : Mathematics |
ISBN | : 0817648402 |
The first edition of this book presented the theory of linear algebraic groups over an algebraically closed field. The second edition, thoroughly revised and expanded, extends the theory over arbitrary fields, which are not necessarily algebraically closed. It thus represents a higher aim. As in the first edition, the book includes a self-contained treatment of the prerequisites from algebraic geometry and commutative algebra, as well as basic results on reductive groups. As a result, the first part of the book can well serve as a text for an introductory graduate course on linear algebraic groups.
Author | : Igor Dolgachev |
Publisher | : Cambridge University Press |
Total Pages | : 244 |
Release | : 2003-08-07 |
Genre | : Mathematics |
ISBN | : 9780521525480 |
The primary goal of this 2003 book is to give a brief introduction to the main ideas of algebraic and geometric invariant theory. It assumes only a minimal background in algebraic geometry, algebra and representation theory. Topics covered include the symbolic method for computation of invariants on the space of homogeneous forms, the problem of finite-generatedness of the algebra of invariants, the theory of covariants and constructions of categorical and geometric quotients. Throughout, the emphasis is on concrete examples which originate in classical algebraic geometry. Based on lectures given at University of Michigan, Harvard University and Seoul National University, the book is written in an accessible style and contains many examples and exercises. A novel feature of the book is a discussion of possible linearizations of actions and the variation of quotients under the change of linearization. Also includes the construction of toric varieties as torus quotients of affine spaces.
Author | : Peter J. Olver |
Publisher | : Cambridge University Press |
Total Pages | : 308 |
Release | : 1999-01-13 |
Genre | : Mathematics |
ISBN | : 9780521558211 |
The book is a self-contained introduction to the results and methods in classical invariant theory.
Author | : Alexander A. Kirillov |
Publisher | : Cambridge University Press |
Total Pages | : 237 |
Release | : 2008-07-31 |
Genre | : Mathematics |
ISBN | : 0521889693 |
This book is an introduction to semisimple Lie algebras. It is concise and informal, with numerous exercises and examples.
Author | : Arkadij L. Onishchik |
Publisher | : Springer Science & Business Media |
Total Pages | : 347 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 364274334X |
This book is based on the notes of the authors' seminar on algebraic and Lie groups held at the Department of Mechanics and Mathematics of Moscow University in 1967/68. Our guiding idea was to present in the most economic way the theory of semisimple Lie groups on the basis of the theory of algebraic groups. Our main sources were A. Borel's paper [34], C. ChevalIey's seminar [14], seminar "Sophus Lie" [15] and monographs by C. Chevalley [4], N. Jacobson [9] and J-P. Serre [16, 17]. In preparing this book we have completely rearranged these notes and added two new chapters: "Lie groups" and "Real semisimple Lie groups". Several traditional topics of Lie algebra theory, however, are left entirely disregarded, e.g. universal enveloping algebras, characters of linear representations and (co)homology of Lie algebras. A distinctive feature of this book is that almost all the material is presented as a sequence of problems, as it had been in the first draft of the seminar's notes. We believe that solving these problems may help the reader to feel the seminar's atmosphere and master the theory. Nevertheless, all the non-trivial ideas, and sometimes solutions, are contained in hints given at the end of each section. The proofs of certain theorems, which we consider more difficult, are given directly in the main text. The book also contains exercises, the majority of which are an essential complement to the main contents.