Renormalization And Geometry In One Dimensional And Complex Dynamics
Download Renormalization And Geometry In One Dimensional And Complex Dynamics full books in PDF, epub, and Kindle. Read online free Renormalization And Geometry In One Dimensional And Complex Dynamics ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Yunping Jiang |
Publisher | : World Scientific |
Total Pages | : 344 |
Release | : 1996 |
Genre | : Science |
ISBN | : 9789810223267 |
The book is intended to help under- and postgraduate students and young scientists in the correct application of NMR to the solution of physico-chemical problems concerning the study of equilibria in solution. The first part of the book (Chapters 1–3) is a trivium, but should enable a student to design and conduct simple physico-chemical NMR experiments. The following chapters give illustrative material on the physico-chemical applications of NMR of increasing complexity. These chapters include the problem of determination of equilibrium and rate constants in solution, the study of paramagnetism using NMR, the application of Dynamic NMR techniques and relaxation measurements. A multipurpose nonlinear regression program is supplied (on disc for PC) and is referred to throughout the book.
Author | : Yunping Jiang |
Publisher | : World Scientific |
Total Pages | : 327 |
Release | : 1996-09-20 |
Genre | : Science |
ISBN | : 9814500178 |
About one and a half decades ago, Feigenbaum observed that bifurcations, from simple dynamics to complicated ones, in a family of folding mappings like quadratic polynomials follow a universal rule (Coullet and Tresser did some similar observation independently). This observation opened a new way to understanding transition from nonchaotic systems to chaotic or turbulent system in fluid dynamics and many other areas. The renormalization was used to explain this observed universality. This research monograph is intended to bring the reader to the frontier of this active research area which is concerned with renormalization and rigidity in real and complex one-dimensional dynamics. The research work of the author in the past several years will be included in this book. Most recent results and techniques developed by Sullivan and others for an understanding of this universality as well as the most basic and important techniques in the study of real and complex one-dimensional dynamics will also be included here.
Author | : Jianyong Qiao |
Publisher | : American Mathematical Soc. |
Total Pages | : 102 |
Release | : 2015-02-06 |
Genre | : Mathematics |
ISBN | : 1470409828 |
The author studies a family of renormalization transformations of generalized diamond hierarchical Potts models through complex dynamical systems. He proves that the Julia set (unstable set) of a renormalization transformation, when it is treated as a complex dynamical system, is the set of complex singularities of the free energy in statistical mechanics. He gives a sufficient and necessary condition for the Julia sets to be disconnected. Furthermore, he proves that all Fatou components (components of the stable sets) of this family of renormalization transformations are Jordan domains with at most one exception which is completely invariant. In view of the problem in physics about the distribution of these complex singularities, the author proves here a new type of distribution: the set of these complex singularities in the real temperature domain could contain an interval. Finally, the author studies the boundary behavior of the first derivative and second derivative of the free energy on the Fatou component containing the infinity. He also gives an explicit value of the second order critical exponent of the free energy for almost every boundary point.
Author | : Jean-Pierre Bourguignon |
Publisher | : Springer |
Total Pages | : 766 |
Release | : 2015-07-24 |
Genre | : Mathematics |
ISBN | : 3319161180 |
The focus of this volume is research carried out as part of the program Mathematics of Planet Earth, which provides a platform to showcase the essential role of mathematics in addressing problems of an economic and social nature and creating a context for mathematicians and applied scientists to foster mathematical and interdisciplinary developments that will be necessary to tackle a myriad of issues and meet future global economic and social challenges. Earth is a planet with dynamic processes in its mantle, oceans and atmosphere creating climate, causing natural disasters and influencing fundamental aspects of life and life-supporting systems. In addition to these natural processes, human activity has developed highly complex systems, including economic and financial systems; the World Wide Web; frameworks for resource management, transportation, energy production and utilization; health care delivery, and social organizations. This development has increased to the point where it impacts the stability and equilibrium in human societies. Issues such as financial and economic crisis, sustainability, management of resources, risk analysis, and global integration have come to the fore. Written by some of the world’s leading specialists, this book presents the proceedings of the International Conference and Advanced School Planet Earth, Dynamics, Games and Science II, held in Lisbon, Portugal, 28 August -6 September 2013, which was organized by the International Center of Mathematics (CIM) as a partner institution of the international program Mathematics of Planet Earth 2013. The book describes the state of the art in advanced research and ultimate techniques in modeling natural, economic and social phenomena. It constitutes a tool and a framework for researchers and graduate students, both in mathematics and applied sciences, focusing mainly on dynamical systems, game theory and applied sciences.
Author | : Luis Alseda |
Publisher | : World Scientific Publishing Company |
Total Pages | : 433 |
Release | : 2000-10-31 |
Genre | : Science |
ISBN | : 9813105593 |
This book introduces the reader to the two main directions of one-dimensional dynamics. The first has its roots in the Sharkovskii theorem, which describes the possible sets of periods of all cycles (periodic orbits) of a continuous map of an interval into itself. The whole theory, which was developed based on this theorem, deals mainly with combinatorial objects, permutations, graphs, etc.; it is called combinatorial dynamics. The second direction has its main objective in measuring the complexity of a system, or the degree of “chaos” present in it; for that the topological entropy is used. The book analyzes the combinatorial dynamics and topological entropy for the continuous maps of either an interval or the circle into itself.
Author | : Mauricio Matos Peixoto |
Publisher | : Springer Science & Business Media |
Total Pages | : 757 |
Release | : 2011-05-27 |
Genre | : Mathematics |
ISBN | : 3642147887 |
Dynamics, Games and Science I and II are a selection of surveys and research articles written by leading researchers in mathematics. The majority of the contributions are on dynamical systems and game theory, focusing either on fundamental and theoretical developments or on applications to modeling in biology, ecomonics, engineering, finances and psychology. The papers are based on talks given at the International Conference DYNA 2008, held in honor of Mauricio Peixoto and David Rand at the University of Braga, Portugal, on September 8-12, 2008. The aim of these volumes is to present cutting-edge research in these areas to encourage graduate students and researchers in mathematics and other fields to develop them further.
Author | : Lan Wen |
Publisher | : World Scientific |
Total Pages | : 374 |
Release | : 1999-12-16 |
Genre | : |
ISBN | : 9814543276 |
This volume constitutes the proceedings of the International Conference on Dynamical Systems in Honor of Prof. Liao Shantao (1920-97). The Third World Academy of Sciences awarded the first ever mathematics prize in 1985 to Prof. Liao in recognition of his foundational work in differentiable dynamical systems and his work in periodic transformation of spheres. The conference was held in Beijing in August 1998. There were about 90 participants, and nearly 60 talks were delivered.The topics covered include differentiable dynamics, topological dynamics, hamiltonian dynamics, complex dynamics, ergodic and stochastic dynamics, and fractals theory. Dynamical systems is a field with many difficult problems, and techniques are being developed to deal with those problems. This volume contains original studies of great mathematical depth and presents some of the fascinating numerical experiments.
Author | : Francis Bonahon |
Publisher | : American Mathematical Soc. |
Total Pages | : 266 |
Release | : 2012 |
Genre | : Mathematics |
ISBN | : 0821853481 |
This volume contains the proceedings of the Conference on Conformal Dynamics and Hyperbolic Geometry, held October 21-23, 2010, in honor of Linda Keen's 70th birthday. This volume provides a valuable introduction to problems in conformal and hyperbolic geometry and one dimensional, conformal dynamics. It includes a classic expository article by John Milnor on the structure of hyperbolic components of the parameter space for dynamical systems arising from the iteration of polynomial maps in the complex plane. In addition there are foundational results concerning Teichmuller theory, the geometry of Fuchsian and Kleinian groups, domain convergence properties for the Poincare metric, elaboration of the theory of the universal solenoid, the geometry of dynamical systems acting on a circle, and realization of Thompson's group as a mapping class group for a uniformly asymptotically affine circle endomorphism. The portion of the volume dealing with complex dynamics will appeal to a diverse group of mathematicians. Recently many researchers working in a wide range of topics, including topology, algebraic geometry, complex analysis, and dynamical systems, have become involved in aspects of this field.
Author | : Hartje Kriete |
Publisher | : CRC Press |
Total Pages | : 204 |
Release | : 1998-05-20 |
Genre | : Mathematics |
ISBN | : 9780582323889 |
In the last few decades, complex dynamical systems have received widespread public attention and emerged as one of the most active fields of mathematical research. Starting where other monographs in the subject end, Progress in Holomorphic Dynamics advances the theoretical aspects and recent results in complex dynamical systems, with particular emphasis on Siegel discs. Organized into four parts, the papers in this volume grew out of three workshops: two hosted by the Georg-August-Universität Göttingen and one at the "Mathematisches Forschungsinstitut Oberwolfach." Part I addresses linearization. The authors review Yoccoz's proof that the Brjuno condition is the optimal condition for linearizability of indifferent fixed points and offer a treatment of Perez-Marco's refinement of Yoccoz's work. Part II discusses the conditions necessary for the boundary of a Siegel disc to contain a critical point, builds upon Herman's work, and offers a survey of the state-of-the-art regarding the boundaries of Siegel discs. Part III deals with the topology of Julia sets with Siegel discs and contains a remarkable highlight: C.L. Petersen establishes the existence of Siegel discs of quadratic polynomials with a locally connected boundary. Keller, taking a different approach, explains the relations between locally connected "real Julia sets" with Siegel discs and the abstract concepts of kneading sequences and itineraries. Part IV closes the volume with four papers that review the different directions of present research in iteration theory. It includes discussions on the relations between commuting rational functions and their Julia sets, interactions between the iteration of polynomials and the iteration theory of entire transcendental functions, a deep analysis of the topology of the limbs of the Mandelbrot set, and an overview of complex dynamics in higher dimensions.
Author | : Welington de Melo |
Publisher | : Springer Science & Business Media |
Total Pages | : 616 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 3642780431 |
One-dimensional dynamics has developed in the last decades into a subject in its own right. Yet, many recent results are inaccessible and have never been brought together. For this reason, we have tried to give a unified ac count of the subject and complete proofs of many results. To show what results one might expect, the first chapter deals with the theory of circle diffeomorphisms. The remainder of the book is an attempt to develop the analogous theory in the non-invertible case, despite the intrinsic additional difficulties. In this way, we have tried to show that there is a unified theory in one-dimensional dynamics. By reading one or more of the chapters, the reader can quickly reach the frontier of research. Let us quickly summarize the book. The first chapter deals with circle diffeomorphisms and contains a complete proof of the theorem on the smooth linearizability of circle diffeomorphisms due to M. Herman, J.-C. Yoccoz and others. Chapter II treats the kneading theory of Milnor and Thurstonj also included are an exposition on Hofbauer's tower construction and a result on fuB multimodal families (this last result solves a question posed by J. Milnor).