Relative Index Theory, Determinants and Torsion for Open Manifolds

Relative Index Theory, Determinants and Torsion for Open Manifolds
Author: Jrgen Eichhorn
Publisher: World Scientific
Total Pages: 353
Release: 2009
Genre: Mathematics
ISBN: 981277145X

For closed manifolds, there is a highly elaborated theory of number-valued invariants, attached to the underlying manifold, structures and differential operators. On open manifolds, nearly all of this fails, with the exception of some special classes. The goal of this monograph is to establish for open manifolds, structures and differential operators an applicable theory of number-valued relative invariants. This is of great use in the theory of moduli spaces for nonlinear partial differential equations and mathematical physics. The book is self-contained: in particular, it contains an outline of the necessary tools from nonlinear Sobolev analysis.

Global Analysis on Open Manifolds

Global Analysis on Open Manifolds
Author: Jürgen Eichhorn
Publisher: Nova Publishers
Total Pages: 664
Release: 2007
Genre: Mathematics
ISBN: 9781600215636

Global analysis is the analysis on manifolds. Since the middle of the sixties there exists a highly elaborated setting if the underlying manifold is compact, evidence of which can be found in index theory, spectral geometry, the theory of harmonic maps, many applications to mathematical physics on closed manifolds like gauge theory, Seiberg-Witten theory, etc. If the underlying manifold is open, i.e. non-compact and without boundary, then most of the foundations and of the great achievements fail. Elliptic operators are no longer Fredholm, the analytical and topological indexes are not defined, the spectrum of self-adjoint elliptic operators is no longer discrete, functional spaces strongly depend on the operators involved and the data from geometry, many embedding and module structure theorems do not hold, manifolds of maps are not defined, etc. It is the goal of this new book to provide serious foundations for global analysis on open manifolds, to discuss the difficulties and special features which come from the openness and to establish many results and applications on this basis.

C*-algebras and Elliptic Theory

C*-algebras and Elliptic Theory
Author: Bogdan Bojarski
Publisher: Springer Science & Business Media
Total Pages: 332
Release: 2006-11-09
Genre: Mathematics
ISBN: 3764376872

This book consists of reviewed original research papers and expository articles in index theory (especially on singular manifolds), topology of manifolds, operator and equivariant K-theory, Hopf cyclic cohomology, geometry of foliations, residue theory, Fredholm pairs and others, and applications in mathematical physics. The wide spectrum of subjects reflects the diverse directions of research for which the starting point was the Atiyah-Singer index theorem.

Three Plays of Maureen Hunter

Three Plays of Maureen Hunter
Author: Hunter, Maureen
Publisher: OIBooks-Libros
Total Pages: 944
Release: 2003
Genre: Drama
ISBN: 1896239994

Book is clean and tight. No writing in text. Like New

Handbook of Global Analysis

Handbook of Global Analysis
Author: Demeter Krupka
Publisher: Elsevier
Total Pages: 1243
Release: 2011-08-11
Genre: Mathematics
ISBN: 0080556736

This is a comprehensive exposition of topics covered by the American Mathematical Society’s classification “Global Analysis , dealing with modern developments in calculus expressed using abstract terminology. It will be invaluable for graduate students and researchers embarking on advanced studies in mathematics and mathematical physics.This book provides a comprehensive coverage of modern global analysis and geometrical mathematical physics, dealing with topics such as; structures on manifolds, pseudogroups, Lie groupoids, and global Finsler geometry; the topology of manifolds and differentiable mappings; differential equations (including ODEs, differential systems and distributions, and spectral theory); variational theory on manifolds, with applications to physics; function spaces on manifolds; jets, natural bundles and generalizations; and non-commutative geometry. - Comprehensive coverage of modern global analysis and geometrical mathematical physics- Written by world-experts in the field- Up-to-date contents

Invariance Theory

Invariance Theory
Author: Peter B. Gilkey
Publisher: CRC Press
Total Pages: 534
Release: 1994-12-22
Genre: Mathematics
ISBN: 9780849378744

This book treats the Atiyah-Singer index theorem using the heat equation, which gives a local formula for the index of any elliptic complex. Heat equation methods are also used to discuss Lefschetz fixed point formulas, the Gauss-Bonnet theorem for a manifold with smooth boundary, and the geometrical theorem for a manifold with smooth boundary. The author uses invariance theory to identify the integrand of the index theorem for classical elliptic complexes with the invariants of the heat equation.

Higher Index Theory

Higher Index Theory
Author: Rufus Willett
Publisher: Cambridge University Press
Total Pages: 595
Release: 2020-07-02
Genre: Mathematics
ISBN: 1108853110

Index theory studies the solutions to differential equations on geometric spaces, their relation to the underlying geometry and topology, and applications to physics. If the space of solutions is infinite dimensional, it becomes necessary to generalise the classical Fredholm index using tools from the K-theory of operator algebras. This leads to higher index theory, a rapidly developing subject with connections to noncommutative geometry, large-scale geometry, manifold topology and geometry, and operator algebras. Aimed at geometers, topologists and operator algebraists, this book takes a friendly and concrete approach to this exciting theory, focusing on the main conjectures in the area and their applications outside of it. A well-balanced combination of detailed introductory material (with exercises), cutting-edge developments and references to the wider literature make this a valuable guide to this active area for graduate students and experts alike.

Holomorphic Curves in Low Dimensions

Holomorphic Curves in Low Dimensions
Author: Chris Wendl
Publisher: Springer
Total Pages: 303
Release: 2018-06-28
Genre: Mathematics
ISBN: 3319913719

This monograph provides an accessible introduction to the applications of pseudoholomorphic curves in symplectic and contact geometry, with emphasis on dimensions four and three. The first half of the book focuses on McDuff's characterization of symplectic rational and ruled surfaces, one of the classic early applications of holomorphic curve theory. The proof presented here uses the language of Lefschetz fibrations and pencils, thus it includes some background on these topics, in addition to a survey of the required analytical results on holomorphic curves. Emphasizing applications rather than technical results, the analytical survey mostly refers to other sources for proofs, while aiming to provide precise statements that are widely applicable, plus some informal discussion of the analytical ideas behind them. The second half of the book then extends this program in two complementary directions: (1) a gentle introduction to Gromov-Witten theory and complete proof of the classification of uniruled symplectic 4-manifolds; and (2) a survey of punctured holomorphic curves and their applications to questions from 3-dimensional contact topology, such as classifying the symplectic fillings of planar contact manifolds. This book will be particularly useful to graduate students and researchers who have basic literacy in symplectic geometry and algebraic topology, and would like to learn how to apply standard techniques from holomorphic curve theory without dwelling more than necessary on the analytical details. This book is also part of the Virtual Series on Symplectic Geometry http://www.springer.com/series/16019