Relation Algebras by Games

Relation Algebras by Games
Author: Robin Hirsch
Publisher: Gulf Professional Publishing
Total Pages: 722
Release: 2002-08-15
Genre: Mathematics
ISBN: 9780444509321

In part 2, games are introduced, and used to axiomatise various classes of algebras. Part 3 discusses approximations to representability, using bases, relation algebra reducts, and relativised representations. Part 4 presents some constructions of relation algebras, including Monk algebras and the 'rainbow construction', and uses them to show that various classes of representable algebras are non-finitely axiomatisable or even non-elementary. Part 5 shows that the representability problem for finite relation algebras is undecidable, and then in contrast proves some finite base property results. Part 6 contains a condensed summary of the book, and a list of problems. There are more than 400 exercises. P The book is generally self-contained on relation algebras and on games, and introductory text is scattered throughout. Some familiarity with elementary aspects of first-order logic and set theory is assumed, though many of the definitions are given.-

Relational and Algebraic Methods in Computer Science

Relational and Algebraic Methods in Computer Science
Author: Roland Glück
Publisher: Springer Nature
Total Pages: 309
Release: 2023-03-07
Genre: Computers
ISBN: 3031280830

This book constitutes the proceedings of the 20th International Conference on Relational and Algebraic Methods in Computer Science, RAMiCS 2023, which took place in Augsburg, Germany, during April 3–6, 2023. The 17 papers presented in this book were carefully reviewed and selected from 26 submissions. They deal with the development and dissemination of relation algebras, Kleene algebras, and similar algebraic formalisms. Topics covered range from mathematical foundations to applications as conceptual and methodological tools in computer science and beyond. Apart from the submitted articles, this volume features the abstracts of the presentations of the three invited speakers.

Foundations of the Formal Sciences V

Foundations of the Formal Sciences V
Author: Stefan Bold
Publisher:
Total Pages: 376
Release: 2007
Genre: Computers
ISBN:

Infinity can feature in games in various forms: we can play games of infinite length, with infinitely many players, or allow for infinitely many moves or strategies. Games of infinite length have been thoroughly investigated by mathematicians ard have played a central role in mathematical logic. However, their applications go far beyond mathematics: they feature prominently in theoretical computer science, philosophical "Gedankenxperiments", as limit cases in economical applications, and in many other applications. The conference "Foundations of the Formal Sciences V" focused on games of infinite length, but was very open to include other notions of infinity in games as well. It brought together researchers from the various areas that employ infinitary game techniques to talk about similarities and dissimilarities of the different approaches and develop cross-cultural bridges. This volume contains the fully refereed proceedings of the conference and provides a healthy and interesting mixture of research papers and surveys for a broad audience.

Abstract Algebra and Solution by Radicals

Abstract Algebra and Solution by Radicals
Author: John Edward Maxfield
Publisher: Courier Corporation
Total Pages: 228
Release: 2010-03-01
Genre: Mathematics
ISBN: 0486477231

The American Mathematical Monthly recommended this advanced undergraduate-level text for teacher education. It starts with groups, rings, fields, and polynomials and advances to Galois theory, radicals and roots of unity, and solution by radicals. Numerous examples, illustrations, commentaries, and exercises enhance the text, along with 13 appendices. 1971 edition.

Computer Science Logic

Computer Science Logic
Author: Matthias Baaz
Publisher: Springer
Total Pages: 603
Release: 2003-12-10
Genre: Mathematics
ISBN: 3540452206

This book constitutes the joint refereed proceedings of the 17th International Workshop on Computer Science Logic, CSL 2003, held as the 12th Annual Conference of the EACSL and of the 8th Kurt Gödel Colloquium, KGC 2003 in Vienna, Austria, in August 2003. The 30 revised full papers presented together with abstracts of 9 invited presentations were carefully reviewed and selected from a total of 112 submissions. All current aspects of computer science logic are addressed ranging from mathematical logic and logical foundations to the application of logics in various computing aspects.

Combinatorial Aspects of Commutative Algebra and Algebraic Geometry

Combinatorial Aspects of Commutative Algebra and Algebraic Geometry
Author: Gunnar Fløystad
Publisher: Springer Science & Business Media
Total Pages: 186
Release: 2011-05-16
Genre: Mathematics
ISBN: 3642194923

The Abel Symposium 2009 "Combinatorial aspects of Commutative Algebra and Algebraic Geometry", held at Voss, Norway, featured talks by leading researchers in the field. This is the proceedings of the Symposium, presenting contributions on syzygies, tropical geometry, Boij-Söderberg theory, Schubert calculus, and quiver varieties. The volume also includes an introductory survey on binomial ideals with applications to hypergeometric series, combinatorial games and chemical reactions. The contributions pose interesting problems, and offer up-to-date research on some of the most active fields of commutative algebra and algebraic geometry with a combinatorial flavour.

Algebra of Probable Inference

Algebra of Probable Inference
Author: Richard T. Cox
Publisher: Johns Hopkins University Press
Total Pages: 0
Release: 2001-12-15
Genre: Mathematics
ISBN: 9780801869822

In Algebra of Probable Inference, Richard T. Cox develops and demonstrates that probability theory is the only theory of inductive inference that abides by logical consistency. Cox does so through a functional derivation of probability theory as the unique extension of Boolean Algebra thereby establishing, for the first time, the legitimacy of probability theory as formalized by Laplace in the 18th century. Perhaps the most significant consequence of Cox's work is that probability represents a subjective degree of plausible belief relative to a particular system but is a theory that applies universally and objectively across any system making inferences based on an incomplete state of knowledge. Cox goes well beyond this amazing conceptual advancement, however, and begins to formulate a theory of logical questions through his consideration of systems of assertions—a theory that he more fully developed some years later. Although Cox's contributions to probability are acknowledged and have recently gained worldwide recognition, the significance of his work regarding logical questions is virtually unknown. The contributions of Richard Cox to logic and inductive reasoning may eventually be seen to be the most significant since Aristotle.