Regularity Results For Nonlocal Fully Nonlinear Elliptic Equations
Download Regularity Results For Nonlocal Fully Nonlinear Elliptic Equations full books in PDF, epub, and Kindle. Read online free Regularity Results For Nonlocal Fully Nonlinear Elliptic Equations ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Luis Angel Caffarelli |
Publisher | : Edizioni della Normale |
Total Pages | : 0 |
Release | : 1999-10-01 |
Genre | : Mathematics |
ISBN | : 9788876422492 |
The material presented here corresponds to Fermi lectures that I was invited to deliver at the Scuola Normale di Pisa in the spring of 1998. The obstacle problem consists in studying the properties of minimizers of the Dirichlet integral in a domain D of Rn, among all those configurations u with prescribed boundary values and costrained to remain in D above a prescribed obstacle F. In the Hilbert space H1(D) of all those functions with square integrable gradient, we consider the closed convex set K of functions u with fixed boundary value and which are greater than F in D. There is a unique point in K minimizing the Dirichlet integral. That is called the solution to the obstacle problem.
Author | : Xavier Fernández-Real |
Publisher | : Springer Nature |
Total Pages | : 409 |
Release | : 2024 |
Genre | : Differential equations, Elliptic |
ISBN | : 3031542428 |
Zusammenfassung: This monograph offers a self-contained introduction to the regularity theory for integro-differential elliptic equations, mostly developed in the 21st century. This class of equations finds relevance in fields such as analysis, probability theory, mathematical physics, and in several contexts in the applied sciences. The work gives a detailed presentation of all the necessary techniques, with a primary focus on the main ideas rather than on proving all the results in their greatest generality. The basic building blocks are presented first, with the study of the square root of the Laplacian, and weak solutions to linear equations. Subsequently, the theory of viscosity solutions to nonlinear equations is developed, and proofs are provided for the main known results in this context. The analysis finishes with the investigation of obstacle problems for integro-differential operators and establishes the regularity of solutions and free boundaries. A distinctive feature of this work lies in its presentation of nearly all covered material in a monographic format for the first time, and several proofs streamline, and often simplify, those in the original papers. Furthermore, various open problems are listed throughout the chapters
Author | : Luis A. Caffarelli |
Publisher | : American Mathematical Soc. |
Total Pages | : 114 |
Release | : 1995 |
Genre | : Mathematics |
ISBN | : 0821804375 |
The goal of the book is to extend classical regularity theorems for solutions of linear elliptic partial differential equations to the context of fully nonlinear elliptic equations. This class of equations often arises in control theory, optimization, and other applications. The authors give a detailed presentation of all the necessary techniques. Instead of treating these techniques in their greatest generality, they outline the key ideas and prove the results needed for developing the subsequent theory. Topics discussed in the book include the theory of viscosity solutions for nonlinear equations, the Alexandroff estimate and Krylov-Safonov Harnack-type inequality for viscosity solutions, uniqueness theory for viscosity solutions, Evans and Krylov regularity theory for convex fully nonlinear equations, and regularity theory for fully nonlinear equations with variable coefficients.
Author | : Serge Levendorskii |
Publisher | : Springer Science & Business Media |
Total Pages | : 442 |
Release | : 2013-11-11 |
Genre | : Mathematics |
ISBN | : 9401712158 |
This volume is the first to be devoted to the study of various properties of wide classes of degenerate elliptic operators of arbitrary order and pseudo-differential operators with multiple characteristics. Conditions for operators to be Fredholm in appropriate weighted Sobolev spaces are given, a priori estimates of solutions are derived, inequalities of the Grding type are proved, and the principal term of the spectral asymptotics for self-adjoint operators is computed. A generalization of the classical Weyl formula is proposed. Some results are new, even for operators of the second order. In addition, an analogue of the Boutet de Monvel calculus is developed and the index is computed. For postgraduate and research mathematicians, physicists and engineers whose work involves the solution of partial differential equations.
Author | : Giovanni Molica Bisci |
Publisher | : Cambridge University Press |
Total Pages | : 401 |
Release | : 2016-03-11 |
Genre | : Mathematics |
ISBN | : 1107111943 |
A thorough graduate-level introduction to the variational analysis of nonlinear problems described by nonlocal operators.
Author | : Pablo Raúl Stinga |
Publisher | : CRC Press |
Total Pages | : 334 |
Release | : 2024-06-21 |
Genre | : Mathematics |
ISBN | : 1040041558 |
Regularity Techniques for Elliptic PDEs and the Fractional Laplacian presents important analytic and geometric techniques to prove regularity estimates for solutions to second order elliptic equations, both in divergence and nondivergence form, and to nonlocal equations driven by the fractional Laplacian. The emphasis is placed on ideas and the development of intuition, while at the same time being completely rigorous. The reader should keep in mind that this text is about how analysis can be applied to regularity estimates. Many methods are nonlinear in nature, but the focus is on linear equations without lower order terms, thus avoiding bulky computations. The philosophy underpinning the book is that ideas must be flushed out in the cleanest and simplest ways, showing all the details and always maintaining rigor. Features Self-contained treatment of the topic Bridges the gap between upper undergraduate textbooks and advanced monographs to offer a useful, accessible reference for students and researchers. Replete with useful references.
Author | : Arina A. Arkhipova |
Publisher | : American Mathematical Soc. |
Total Pages | : 268 |
Release | : 2010 |
Genre | : Mathematics |
ISBN | : 0821849972 |
"St. Petersburg PDE seminar, special session dedicated to N.N. Uraltseva's [75th] anniversary, June 2009"--P. [vi].
Author | : Alexander Grigor'yan |
Publisher | : Walter de Gruyter GmbH & Co KG |
Total Pages | : 526 |
Release | : 2021-01-18 |
Genre | : Mathematics |
ISBN | : 311070076X |
The book covers the latest research in the areas of mathematics that deal the properties of partial differential equations and stochastic processes on spaces in connection with the geometry of the underlying space. Written by experts in the field, this book is a valuable tool for the advanced mathematician.
Author | : Helge Holden |
Publisher | : Springer Science & Business Media |
Total Pages | : 369 |
Release | : 2012-01-15 |
Genre | : Mathematics |
ISBN | : 3642253601 |
The topic of the 2010 Abel Symposium, hosted at the Norwegian Academy of Science and Letters, Oslo, was Nonlinear Partial Differential Equations, the study of which is of fundamental importance in mathematics and in almost all of natural sciences, economics, and engineering. This area of mathematics is currently in the midst of an unprecedented development worldwide. Differential equations are used to model phenomena of increasing complexity, and in areas that have traditionally been outside the realm of mathematics. New analytical tools and numerical methods are dramatically improving our understanding of nonlinear models. Nonlinearity gives rise to novel effects reflected in the appearance of shock waves, turbulence, material defects, etc., and offers challenging mathematical problems. On the other hand, new mathematical developments provide new insight in many applications. These proceedings present a selection of the latest exciting results by world leading researchers.
Author | : Vicentiu D. Radulescu |
Publisher | : Hindawi Publishing Corporation |
Total Pages | : 205 |
Release | : 2008 |
Genre | : Differential equations, Elliptic |
ISBN | : 9774540395 |
This book provides a comprehensive introduction to the mathematical theory of nonlinear problems described by elliptic partial differential equations. These equations can be seen as nonlinear versions of the classical Laplace equation, and they appear as mathematical models in different branches of physics, chemistry, biology, genetics, and engineering and are also relevant in differential geometry and relativistic physics. Much of the modern theory of such equations is based on the calculus of variations and functional analysis. Concentrating on single-valued or multivalued elliptic equations with nonlinearities of various types, the aim of this volume is to obtain sharp existence or nonexistence results, as well as decay rates for general classes of solutions. Many technically relevant questions are presented and analyzed in detail. A systematic picture of the most relevant phenomena is obtained for the equations under study, including bifurcation, stability, asymptotic analysis, and optimal regularity of solutions. The method of presentation should appeal to readers with different backgrounds in functional analysis and nonlinear partial differential equations. All chapters include detailed heuristic arguments providing thorough motivation of the study developed later on in the text, in relationship with concrete processes arising in applied sciences. A systematic description of the most relevant singular phenomena described in this volume includes existence (or nonexistence) of solutions, unicity or multiplicity properties, bifurcation and asymptotic analysis, and optimal regularity. The book includes an extensive bibliography and a rich index, thus allowing for quick orientation among the vast collection of literature on the mathematical theory of nonlinear phenomena described by elliptic partial differential equations.