Recreations in the Theory of Numbers

Recreations in the Theory of Numbers
Author: Albert H. Beiler
Publisher: Courier Corporation
Total Pages: 383
Release: 1964-01-01
Genre: Games & Activities
ISBN: 0486210960

Number theory proves to be a virtually inexhaustible source of intriguing puzzle problems. Includes divisors, perfect numbers, the congruences of Gauss, scales of notation, the Pell equation, more. Solutions to all problems.

An Adventurer's Guide to Number Theory

An Adventurer's Guide to Number Theory
Author: Richard Friedberg
Publisher: Courier Corporation
Total Pages: 241
Release: 2012-07-06
Genre: Mathematics
ISBN: 0486152693

This witty introduction to number theory deals with the properties of numbers and numbers as abstract concepts. Topics include primes, divisibility, quadratic forms, and related theorems.

Mathematical Recreations and Essays

Mathematical Recreations and Essays
Author: W. W. Rouse Ball
Publisher: Createspace Independent Publishing Platform
Total Pages: 376
Release: 2018-07-11
Genre:
ISBN: 9781722814885

Mathematical Recreations and Essays W. W. Rouse Ball For nearly a century, this sparkling classic has provided stimulating hours of entertainment to the mathematically inclined. The problems posed here often involve fundamental mathematical methods and notions, but their chief appeal is their capacity to tease and delight. In these pages you will find scores of "recreations" to amuse you and to challenge your problem-solving faculties-often to the limit. Now in its 13th edition, Mathematical Recreations and Essays has been thoroughly revised and updated over the decades since its first publication in 1892. This latest edition retains all the remarkable character of the original, but the terminology and treatment of some problems have been updated and new material has been added. Among the challenges in store for you: Arithmetical and geometrical recreations; Polyhedra; Chess-board recreations; Magic squares; Map-coloring problems; Unicursal problems; Cryptography and cryptanalysis; Calculating prodigies; ... and more. You'll even find problems which mathematical ingenuity can solve but the computer cannot. No knowledge of calculus or analytic geometry is necessary to enjoy these games and puzzles. With basic mathematical skills and the desire to meet a challenge you can put yourself to the test and win. "A must to add to your mathematics library."-The Mathematics Teacher We are delighted to publish this classic book as part of our extensive Classic Library collection. Many of the books in our collection have been out of print for decades, and therefore have not been accessible to the general public. The aim of our publishing program is to facilitate rapid access to this vast reservoir of literature, and our view is that this is a significant literary work, which deserves to be brought back into print after many decades. The contents of the vast majority of titles in the Classic Library have been scanned from the original works. To ensure a high quality product, each title has been meticulously hand curated by our staff. Our philosophy has been guided by a desire to provide the reader with a book that is as close as possible to ownership of the original work. We hope that you will enjoy this wonderful classic work, and that for you it becomes an enriching experience.

Problem Solving Through Recreational Mathematics

Problem Solving Through Recreational Mathematics
Author: Bonnie Averbach
Publisher: Courier Corporation
Total Pages: 482
Release: 2012-03-15
Genre: Mathematics
ISBN: 0486131742

Fascinating approach to mathematical teaching stresses use of recreational problems, puzzles, and games to teach critical thinking. Logic, number and graph theory, games of strategy, much more. Includes answers to selected problems. Free solutions manual available for download at the Dover website.

Number Theory

Number Theory
Author: George E. Andrews
Publisher: Courier Corporation
Total Pages: 292
Release: 2012-04-30
Genre: Mathematics
ISBN: 0486135101

Undergraduate text uses combinatorial approach to accommodate both math majors and liberal arts students. Covers the basics of number theory, offers an outstanding introduction to partitions, plus chapters on multiplicativity-divisibility, quadratic congruences, additivity, and more.

Elementary Number Theory: Primes, Congruences, and Secrets

Elementary Number Theory: Primes, Congruences, and Secrets
Author: William Stein
Publisher: Springer Science & Business Media
Total Pages: 173
Release: 2008-10-28
Genre: Mathematics
ISBN: 0387855254

This is a book about prime numbers, congruences, secret messages, and elliptic curves that you can read cover to cover. It grew out of undergr- uate courses that the author taught at Harvard, UC San Diego, and the University of Washington. The systematic study of number theory was initiated around 300B. C. when Euclid proved that there are in?nitely many prime numbers, and also cleverly deduced the fundamental theorem of arithmetic, which asserts that every positive integer factors uniquely as a product of primes. Over a thousand years later (around 972A. D. ) Arab mathematicians formulated the congruent number problem that asks for a way to decide whether or not a given positive integer n is the area of a right triangle, all three of whose sides are rational numbers. Then another thousand years later (in 1976), Di?e and Hellman introduced the ?rst ever public-key cryptosystem, which enabled two people to communicate secretely over a public communications channel with no predetermined secret; this invention and the ones that followed it revolutionized the world of digital communication. In the 1980s and 1990s, elliptic curves revolutionized number theory, providing striking new insights into the congruent number problem, primality testing, publ- key cryptography, attacks on public-key systems, and playing a central role in Andrew Wiles’ resolution of Fermat’s Last Theorem.

Basic Number Theory

Basic Number Theory
Author: Andre Weil
Publisher: Springer Science & Business Media
Total Pages: 340
Release: 1995-02-15
Genre: Mathematics
ISBN: 9783540586555

From the reviews: "L.R. Shafarevich showed me the first edition [...] and said that this book will be from now on the book about class field theory. In fact it is by far the most complete treatment of the main theorems of algebraic number theory, including function fields over finite constant fields, that appeared in book form." Zentralblatt MATH

Elements of Number Theory

Elements of Number Theory
Author: John Stillwell
Publisher: Springer Science & Business Media
Total Pages: 266
Release: 2012-11-12
Genre: Mathematics
ISBN: 0387217355

Solutions of equations in integers is the central problem of number theory and is the focus of this book. The amount of material is suitable for a one-semester course. The author has tried to avoid the ad hoc proofs in favor of unifying ideas that work in many situations. There are exercises at the end of almost every section, so that each new idea or proof receives immediate reinforcement.

An Illustrated Theory of Numbers

An Illustrated Theory of Numbers
Author: Martin H. Weissman
Publisher: American Mathematical Soc.
Total Pages: 341
Release: 2020-09-15
Genre: Education
ISBN: 1470463717

News about this title: — Author Marty Weissman has been awarded a Guggenheim Fellowship for 2020. (Learn more here.) — Selected as a 2018 CHOICE Outstanding Academic Title — 2018 PROSE Awards Honorable Mention An Illustrated Theory of Numbers gives a comprehensive introduction to number theory, with complete proofs, worked examples, and exercises. Its exposition reflects the most recent scholarship in mathematics and its history. Almost 500 sharp illustrations accompany elegant proofs, from prime decomposition through quadratic reciprocity. Geometric and dynamical arguments provide new insights, and allow for a rigorous approach with less algebraic manipulation. The final chapters contain an extended treatment of binary quadratic forms, using Conway's topograph to solve quadratic Diophantine equations (e.g., Pell's equation) and to study reduction and the finiteness of class numbers. Data visualizations introduce the reader to open questions and cutting-edge results in analytic number theory such as the Riemann hypothesis, boundedness of prime gaps, and the class number 1 problem. Accompanying each chapter, historical notes curate primary sources and secondary scholarship to trace the development of number theory within and outside the Western tradition. Requiring only high school algebra and geometry, this text is recommended for a first course in elementary number theory. It is also suitable for mathematicians seeking a fresh perspective on an ancient subject.