Recent Issues In Pattern Analysis And Recognition
Download Recent Issues In Pattern Analysis And Recognition full books in PDF, epub, and Kindle. Read online free Recent Issues In Pattern Analysis And Recognition ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Virginio Cantoni |
Publisher | : Springer Science & Business Media |
Total Pages | : 1060 |
Release | : 1989-12-20 |
Genre | : Computers |
ISBN | : 9783540518150 |
This book offers readers a broad view of research in some Western and Eastern European countries on pattern and signal analysis, and on coding, handling and measurement of images. It is a selection of refereed papers from two sources: first, a satellite conference within the biannual International Conference on Pattern Recognition held in Rome, November 14-17, 1988, and second, work done at the International Basic Laboratory on Image Processing and Computer Graphics, Berlin, GDR. The papers are grouped into three sections. The first section contains new proposals for the specific computation of particular features of digital images and the second section is devoted to the introduction and testing of general approaches to the solution of problems met in digital geometry, image coding, feature extraction and object classification. The third section illustrates some recent practical results obtained on real images specifically in character and speech recognition as well as in biomedicine. All the techniques illustrated in this book will find direct application in the near future. This book should interest and stimulate the reader, provoke new thoughts and encourage further research in this widely appealing field.
Author | : Christopher M. Bishop |
Publisher | : Springer |
Total Pages | : 0 |
Release | : 2016-08-23 |
Genre | : Computers |
ISBN | : 9781493938438 |
This is the first textbook on pattern recognition to present the Bayesian viewpoint. The book presents approximate inference algorithms that permit fast approximate answers in situations where exact answers are not feasible. It uses graphical models to describe probability distributions when no other books apply graphical models to machine learning. No previous knowledge of pattern recognition or machine learning concepts is assumed. Familiarity with multivariate calculus and basic linear algebra is required, and some experience in the use of probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.
Author | : Alexander Gammerman |
Publisher | : Springer |
Total Pages | : 235 |
Release | : 2016-04-16 |
Genre | : Computers |
ISBN | : 331933395X |
This book constitutes the refereed proceedings of the 5th International Symposium on Conformal and Probabilistic Prediction with Applications, COPA 2016, held in Madrid, Spain, in April 2016. The 14 revised full papers presented together with 1 invited paper were carefully reviewed and selected from 23 submissions and cover topics on theory of conformal prediction; applications of conformal prediction; and machine learning.
Author | : Earl Gose |
Publisher | : Prentice Hall |
Total Pages | : 504 |
Release | : 1996 |
Genre | : Computers |
ISBN | : |
Over the past 20 to 25 years, pattern recognition has become an important part of image processing applications where the input data is an image. This book is a complete introduction to pattern recognition and its increasing role in image processing. It covers the traditional issues of pattern recognition and also introduces two of the fastest growing areas: Image Processing and Artificial Neural Networks. Examples and digital images illustrate the techniques, while an appendix describes pattern recognition using the SAS statistical software system.
Author | : Chi Hau Chen |
Publisher | : World Scientific |
Total Pages | : 1045 |
Release | : 1999-03-12 |
Genre | : Computers |
ISBN | : 9814497649 |
The very significant advances in computer vision and pattern recognition and their applications in the last few years reflect the strong and growing interest in the field as well as the many opportunities and challenges it offers. The second edition of this handbook represents both the latest progress and updated knowledge in this dynamic field. The applications and technological issues are particularly emphasized in this edition to reflect the wide applicability of the field in many practical problems. To keep the book in a single volume, it is not possible to retain all chapters of the first edition. However, the chapters of both editions are well written for permanent reference. This indispensable handbook will continue to serve as an authoritative and comprehensive guide in the field.
Author | : Volna, Eva |
Publisher | : IGI Global |
Total Pages | : 295 |
Release | : 2016-07-22 |
Genre | : Computers |
ISBN | : 1522505660 |
Patterns can be any number of items that occur repeatedly, whether in the behaviour of animals, humans, traffic, or even in the appearance of a design. As technologies continue to advance, recognizing, mimicking, and responding to all types of patterns becomes more precise. Pattern Recognition and Classification in Time Series Data focuses on intelligent methods and techniques for recognizing and storing dynamic patterns. Emphasizing topics related to artificial intelligence, pattern management, and algorithm development, in addition to practical examples and applications, this publication is an essential reference source for graduate students, researchers, and professionals in a variety of computer-related disciplines.
Author | : Marleah Blom |
Publisher | : World Scientific |
Total Pages | : 277 |
Release | : 2021-11-16 |
Genre | : Computers |
ISBN | : 9811239029 |
This book includes reviewed papers by international scholars from the 2020 International Conference on Pattern Recognition and Artificial Intelligence (held online). The papers have been expanded to provide more details specifically for the book. It is geared to promote ongoing interest and understanding about pattern recognition and artificial intelligence. Like the previous book in the series, this book covers a range of topics and illustrates potential areas where pattern recognition and artificial intelligence can be applied. It highlights, for example, how pattern recognition and artificial intelligence can be used to classify, predict, detect and help promote further discoveries related to credit scores, criminal news, national elections, license plates, gender, personality characteristics, health, and more.Chapters include works centred on medical and financial applications as well as topics related to handwriting analysis and text processing, internet security, image analysis, database creation, neural networks and deep learning. While the book is geared to promote interest from the general public, it may also be of interest to graduate students and researchers in the field.
Author | : Marcello Pelillo |
Publisher | : Springer Science & Business Media |
Total Pages | : 293 |
Release | : 2013-11-26 |
Genre | : Computers |
ISBN | : 1447156285 |
This accessible text/reference presents a coherent overview of the emerging field of non-Euclidean similarity learning. The book presents a broad range of perspectives on similarity-based pattern analysis and recognition methods, from purely theoretical challenges to practical, real-world applications. The coverage includes both supervised and unsupervised learning paradigms, as well as generative and discriminative models. Topics and features: explores the origination and causes of non-Euclidean (dis)similarity measures, and how they influence the performance of traditional classification algorithms; reviews similarity measures for non-vectorial data, considering both a “kernel tailoring” approach and a strategy for learning similarities directly from training data; describes various methods for “structure-preserving” embeddings of structured data; formulates classical pattern recognition problems from a purely game-theoretic perspective; examines two large-scale biomedical imaging applications.
Author | : Animesh Adhikari |
Publisher | : Springer Science & Business Media |
Total Pages | : 247 |
Release | : 2013-12-09 |
Genre | : Technology & Engineering |
ISBN | : 3319034103 |
Pattern recognition in data is a well known classical problem that falls under the ambit of data analysis. As we need to handle different data, the nature of patterns, their recognition and the types of data analyses are bound to change. Since the number of data collection channels increases in the recent time and becomes more diversified, many real-world data mining tasks can easily acquire multiple databases from various sources. In these cases, data mining becomes more challenging for several essential reasons. We may encounter sensitive data originating from different sources - those cannot be amalgamated. Even if we are allowed to place different data together, we are certainly not able to analyze them when local identities of patterns are required to be retained. Thus, pattern recognition in multiple databases gives rise to a suite of new, challenging problems different from those encountered before. Association rule mining, global pattern discovery and mining patterns of select items provide different patterns discovery techniques in multiple data sources. Some interesting item-based data analyses are also covered in this book. Interesting patterns, such as exceptional patterns, icebergs and periodic patterns have been recently reported. The book presents a thorough influence analysis between items in time-stamped databases. The recent research on mining multiple related databases is covered while some previous contributions to the area are highlighted and contrasted with the most recent developments.
Author | : Svetlana N. Yanushkevich |
Publisher | : World Scientific |
Total Pages | : 453 |
Release | : 2007 |
Genre | : Computers |
ISBN | : 9812770674 |
The field of biometrics utilizes computer models of the physical and behavioral characteristics of human beings with a view to reliable personal identification. The human characteristics of interest include visual images, speech, and indeed anything which might help to uniquely identify the individual. The other side of the biometrics coin is biometric synthesis OCo rendering biometric phenomena from their corresponding computer models. For example, we could generate a synthetic face from its corresponding computer model. Such a model could include muscular dynamics to model the full gamut of human emotions conveyed by facial expressions. This book is a collection of carefully selected papers presenting the fundamental theory and practice of various aspects of biometric data processing in the context of pattern recognition. The traditional task of biometric technologies OCo human identification by analysis of biometric. data OCo is extended to include the new discipline of biometric synthesis."