Operator Theory, Operator Algebras, and Matrix Theory

Operator Theory, Operator Algebras, and Matrix Theory
Author: Carlos André
Publisher: Birkhäuser
Total Pages: 381
Release: 2018-08-22
Genre: Mathematics
ISBN: 3319724495

This book consists of invited survey articles and research papers in the scientific areas of the “International Workshop on Operator Algebras, Operator Theory and Applications,” which was held in Lisbon in July 2016. Reflecting recent developments in the field of algebras of operators, operator theory and matrix theory, it particularly focuses on groupoid algebras and Fredholm conditions, algebras of approximation sequences, C* algebras of convolution type operators, index theorems, spectrum and numerical range of operators, extreme supercharacters of infinite groups, quantum dynamics and operator algebras, and inverse eigenvalue problems. Establishing bridges between the three related areas of operator algebras, operator theory, and matrix theory, the book is aimed at researchers and graduate students who use results from these areas.

Recent Advances in Operator Theory and Operator Algebras

Recent Advances in Operator Theory and Operator Algebras
Author: Hari Bercovici
Publisher: CRC Press
Total Pages: 167
Release: 2017-08-07
Genre: Mathematics
ISBN: 1317974611

This book will contain lectures given by four eminent speakers at the Recent Advances in Operator Theory and Operator Algebras conference held at the Indian Statistical Institute, Bangalore, India in 2014. The main aim of this book is to bring together various results in one place with cogent introduction and references for further study.

Recent Advances in Operator Theory, Operator Algebras, and their Applications

Recent Advances in Operator Theory, Operator Algebras, and their Applications
Author: Dumitru Gaspar
Publisher: Springer Science & Business Media
Total Pages: 351
Release: 2006-03-30
Genre: Mathematics
ISBN: 3764373148

This book offers peer-reviewed articles from the 19th International Conference on Operator Theory, Summer 2002. It contains recent developments in a broad range of topics from operator theory, operator algebras and their applications, particularly to differential analysis, complex functions, ergodic theory, mathematical physics, matrix analysis, and systems theory. The book covers a large variety of topics including single operator theory, C*-algebras, diffrential operators, integral transforms, stochastic processes and operators, and more.

Unbounded Operator Algebras and Representation Theory

Unbounded Operator Algebras and Representation Theory
Author: K. Schmüdgen
Publisher: Birkhäuser
Total Pages: 381
Release: 2013-11-11
Genre: Mathematics
ISBN: 3034874693

*-algebras of unbounded operators in Hilbert space, or more generally algebraic systems of unbounded operators, occur in a natural way in unitary representation theory of Lie groups and in the Wightman formulation of quantum field theory. In representation theory they appear as the images of the associated representations of the Lie algebras or of the enveloping algebras on the Garding domain and in quantum field theory they occur as the vector space of field operators or the *-algebra generated by them. Some of the basic tools for the general theory were first introduced and used in these fields. For instance, the notion of the weak (bounded) commutant which plays a fundamental role in thegeneraltheory had already appeared in quantum field theory early in the six ties. Nevertheless, a systematic study of unbounded operator algebras began only at the beginning of the seventies. It was initiated by (in alphabetic order) BORCHERS, LASSNER, POWERS, UHLMANN and VASILIEV. J1'rom the very beginning, and still today, represen tation theory of Lie groups and Lie algebras and quantum field theory have been primary sources of motivation and also of examples. However, the general theory of unbounded operator algebras has also had points of contact with several other disciplines. In particu lar, the theory of locally convex spaces, the theory of von Neumann algebras, distri bution theory, single operator theory, the momcnt problem and its non-commutative generalizations and noncommutative probability theory, all have interacted with our subject.

Operator Theory, Functional Analysis and Applications

Operator Theory, Functional Analysis and Applications
Author: M. Amélia Bastos
Publisher: Birkhäuser
Total Pages: 657
Release: 2021-04-01
Genre: Mathematics
ISBN: 9783030519445

This book presents 30 articles on the topic areas discussed at the 30th “International Workshop on Operator Theory and its Applications”, held in Lisbon in July 2019. The contributions include both expository essays and original research papers reflecting recent advances in the traditional IWOTA areas and emerging adjacent fields, as well as the applications of Operator Theory and Functional Analysis. The topics range from C*–algebras and Banach *–algebras, Sturm-Liouville theory, integrable systems, dilation theory, frame theory, Toeplitz, Hankel, and singular integral operators, to questions from lattice, group and matrix theories, complex analysis, harmonic analysis, and function spaces. Given its scope, the book is chiefly intended for researchers and graduate students in the areas of Operator Theory, Functional Analysis, their applications and adjacent fields.

Operator Algebras and Mathematical Physics

Operator Algebras and Mathematical Physics
Author: Tirthankar Bhattacharyya
Publisher: Birkhäuser
Total Pages: 207
Release: 2015-09-29
Genre: Mathematics
ISBN: 3319181823

This volume gathers contributions from the International Workshop on Operator Theory and Its Applications (IWOTA) held in Bangalore, India, in December 2013. All articles were written by experts and cover a broad range of original material at the cutting edge of operator theory and its applications. Topics include multivariable operator theory, operator theory on indefinite metric spaces (Krein and Pontryagin spaces) and its applications, spectral theory with applications to differential operators, the geometry of Banach spaces, scattering and time varying linear systems, and wavelets and coherent states.

C*-Algebras and Operator Theory

C*-Algebras and Operator Theory
Author: Gerald J. Murphy
Publisher: Academic Press
Total Pages: 297
Release: 2014-06-28
Genre: Mathematics
ISBN: 0080924964

This book constitutes a first- or second-year graduate course in operator theory. It is a field that has great importance for other areas of mathematics and physics, such as algebraic topology, differential geometry, and quantum mechanics. It assumes a basic knowledge in functional analysis but no prior acquaintance with operator theory is required.

Recent Advances in Operator Theory

Recent Advances in Operator Theory
Author: A. Dijksma
Publisher: Birkhäuser
Total Pages: 592
Release: 2012-12-06
Genre: Mathematics
ISBN: 3034883234

A collection of 25 papers dedicated to Israel Gohberg, an outstanding leader in operator theory. Also containing a review of his contributions to mathematics and a complete list of his publications. The book is of interest to a wide audience of pure and applied mathematicians.

Recent Advances in Operator Theory and Applications

Recent Advances in Operator Theory and Applications
Author: Tsuyoshi Ando
Publisher: Springer Science & Business Media
Total Pages: 249
Release: 2008-12-19
Genre: Mathematics
ISBN: 3764388935

Contains the proceedings of the International Workshop on Operator Theory and Applications (IWOTA 2006) held at Seoul National University, Seoul, Korea, from July 31 to August 3, 2006. This volume contains sixteen research papers which reflect developments in operator theory and applications.

Recent Trends in Operator Theory and Applications

Recent Trends in Operator Theory and Applications
Author: Fernanda Botelho
Publisher:
Total Pages: 194
Release: 2019
Genre: Electronic books
ISBN: 9781470455248

This volume contains the proceedings of the workshop on Recent Trends in Operator Theory and Applications (RTOTA 2018), held from May 3-5, 2018, at the University of Memphis, Memphis, Tennessee. The articles introduce topics from operator theory to graduate students and early career researchers. Each such article provides insightful references, selection of results with articulation to modern research and recent advances in the area. Topics addressed in this volume include: generalized numerical ranges and their application to study perturbation of operators, and connections to quantum error c.