Real and Complex Dynamical Systems

Real and Complex Dynamical Systems
Author: B. Branner
Publisher: Springer Science & Business Media
Total Pages: 354
Release: 2013-03-14
Genre: Mathematics
ISBN: 9401584397

This volume contains edited versions of 11 contributions given by main speakers at the NATO Advanced Study Institute on lReal and Complex Dynamical Systems in Hiller0d, Denmark, June 20th - July 2nd, 1993. The vision of the institute was to illustrate the interplay between two important fields of Mathematics: Real Dynamical Systems and Complex Dynamical Systems. The interaction between these two fields has been growing over the years. Problems in Real Dynamical Systems have recently been solved using complex tools in the real or by extension to the complex. In return, problems in Complex Dynamical Systems have been settled using results from Real Dynamical Systems. The programme of the institute was to examine the state of the art of central parts of both Real and Complex Dynamical Systems, to reinforce contact between the two aspects of the theory and to make recent progress in each accessible to a larger group of mathematicians.

Complex Analysis and Dynamical Systems

Complex Analysis and Dynamical Systems
Author: Mark Agranovsky
Publisher: Birkhäuser
Total Pages: 373
Release: 2018-01-31
Genre: Mathematics
ISBN: 3319701541

This book focuses on developments in complex dynamical systems and geometric function theory over the past decade, showing strong links with other areas of mathematics and the natural sciences. Traditional methods and approaches surface in physics and in the life and engineering sciences with increasing frequency – the Schramm‐Loewner evolution, Laplacian growth, and quadratic differentials are just a few typical examples. This book provides a representative overview of these processes and collects open problems in the various areas, while at the same time showing where and how each particular topic evolves. This volume is dedicated to the memory of Alexander Vasiliev.

Complex Dynamical Systems in Education

Complex Dynamical Systems in Education
Author: Matthijs Koopmans
Publisher: Springer
Total Pages: 416
Release: 2016-02-19
Genre: Education
ISBN: 3319275771

This book capitalizes on the developments in dynamical systems and education by presenting some of the most recent advances in this area in seventeen non-overlapping chapters. The first half of the book discusses the conceptual framework of complex dynamical systems and its applicability to educational processes. The second half presents a set of empirical studies that that illustrate the use of various research methodologies to investigate complex dynamical processes in education, and help the reader appreciate what we learn about dynamical processes in education from using these approaches.

Analysis and Data-Based Reconstruction of Complex Nonlinear Dynamical Systems

Analysis and Data-Based Reconstruction of Complex Nonlinear Dynamical Systems
Author: M. Reza Rahimi Tabar
Publisher: Springer
Total Pages: 290
Release: 2019-07-04
Genre: Science
ISBN: 3030184722

This book focuses on a central question in the field of complex systems: Given a fluctuating (in time or space), uni- or multi-variant sequentially measured set of experimental data (even noisy data), how should one analyse non-parametrically the data, assess underlying trends, uncover characteristics of the fluctuations (including diffusion and jump contributions), and construct a stochastic evolution equation? Here, the term "non-parametrically" exemplifies that all the functions and parameters of the constructed stochastic evolution equation can be determined directly from the measured data. The book provides an overview of methods that have been developed for the analysis of fluctuating time series and of spatially disordered structures. Thanks to its feasibility and simplicity, it has been successfully applied to fluctuating time series and spatially disordered structures of complex systems studied in scientific fields such as physics, astrophysics, meteorology, earth science, engineering, finance, medicine and the neurosciences, and has led to a number of important results. The book also includes the numerical and analytical approaches to the analyses of complex time series that are most common in the physical and natural sciences. Further, it is self-contained and readily accessible to students, scientists, and researchers who are familiar with traditional methods of mathematics, such as ordinary, and partial differential equations. The codes for analysing continuous time series are available in an R package developed by the research group Turbulence, Wind energy and Stochastic (TWiSt) at the Carl von Ossietzky University of Oldenburg under the supervision of Prof. Dr. Joachim Peinke. This package makes it possible to extract the (stochastic) evolution equation underlying a set of data or measurements.

Mathematics of Complexity and Dynamical Systems

Mathematics of Complexity and Dynamical Systems
Author: Robert A. Meyers
Publisher: Springer Science & Business Media
Total Pages: 1885
Release: 2011-10-05
Genre: Mathematics
ISBN: 1461418054

Mathematics of Complexity and Dynamical Systems is an authoritative reference to the basic tools and concepts of complexity, systems theory, and dynamical systems from the perspective of pure and applied mathematics. Complex systems are systems that comprise many interacting parts with the ability to generate a new quality of collective behavior through self-organization, e.g. the spontaneous formation of temporal, spatial or functional structures. These systems are often characterized by extreme sensitivity to initial conditions as well as emergent behavior that are not readily predictable or even completely deterministic. The more than 100 entries in this wide-ranging, single source work provide a comprehensive explication of the theory and applications of mathematical complexity, covering ergodic theory, fractals and multifractals, dynamical systems, perturbation theory, solitons, systems and control theory, and related topics. Mathematics of Complexity and Dynamical Systems is an essential reference for all those interested in mathematical complexity, from undergraduate and graduate students up through professional researchers.

Dynamical Systems in Social Psychology

Dynamical Systems in Social Psychology
Author: Robin R. Vallacher
Publisher: Academic Press
Total Pages: 338
Release: 1994-01-11
Genre: Medical
ISBN:

A dynamical system refers to a set of elements that interact in complex, often nonlinear ways to form coherent patterns. Because of the complexity of these interactions, the system as a whole may evolve over time in seemingly unpredictable ways as new patterns of behavior emerge. This metatheory has proven useful in understanding diverse phenomena in meteorology, population biology, statistical mechanics, economics, and cosmology. The book demonstrates how the dynamical systems perspective can be applied to theory construction and research in social psychology, and in doing so, provides fresh insight into such complex phenomena as interpersonal behavior, social relations, attitudes, and social cognition.

Dynamics Of Complex Systems

Dynamics Of Complex Systems
Author: Yaneer Bar-yam
Publisher: CRC Press
Total Pages: 866
Release: 2019-03-04
Genre: Mathematics
ISBN: 0429717598

This book aims to develop models and modeling techniques that are useful when applied to all complex systems. It adopts both analytic tools and computer simulation. The book is intended for students and researchers with a variety of backgrounds.

Arakelov Geometry

Arakelov Geometry
Author: Atsushi Moriwaki
Publisher: American Mathematical Soc.
Total Pages: 298
Release: 2014-11-05
Genre: Mathematics
ISBN: 1470410745

The main goal of this book is to present the so-called birational Arakelov geometry, which can be viewed as an arithmetic analog of the classical birational geometry, i.e., the study of big linear series on algebraic varieties. After explaining classical results about the geometry of numbers, the author starts with Arakelov geometry for arithmetic curves, and continues with Arakelov geometry of arithmetic surfaces and higher-dimensional varieties. The book includes such fundamental results as arithmetic Hilbert-Samuel formula, arithmetic Nakai-Moishezon criterion, arithmetic Bogomolov inequality, the existence of small sections, the continuity of arithmetic volume function, the Lang-Bogomolov conjecture and so on. In addition, the author presents, with full details, the proof of Faltings' Riemann-Roch theorem. Prerequisites for reading this book are the basic results of algebraic geometry and the language of schemes.

Synchronization in Complex Networks of Nonlinear Dynamical Systems

Synchronization in Complex Networks of Nonlinear Dynamical Systems
Author: Chai Wah Wu
Publisher: World Scientific
Total Pages: 168
Release: 2007
Genre: Mathematics
ISBN: 9812709746

This book brings together two emerging research areas: synchronization in coupled nonlinear systems and complex networks, and study conditions under which a complex network of dynamical systems synchronizes. While there are many texts that study synchronization in chaotic systems or properties of complex networks, there are few texts that consider the intersection of these two very active and interdisciplinary research areas. The main theme of this book is that synchronization conditions can be related to graph theoretical properties of the underlying coupling topology. The book introduces ideas from systems theory, linear algebra and graph theory and the synergy between them that are necessary to derive synchronization conditions. Many of the results, which have been obtained fairly recently and have until now not appeared in textbook form, are presented with complete proofs. This text is suitable for graduate-level study or for researchers who would like to be better acquainted with the latest research in this area. Sample Chapter(s). Chapter 1: Introduction (76 KB). Contents: Graphs, Networks, Laplacian Matrices and Algebraic Connectivity; Graph Models; Synchronization in Networks of Nonlinear Continuous-Time Dynamical Systems; Synchronization in Networks of Coupled Discrete-Time Systems; Synchronization in Network of Systems with Linear Dynamics; Agreement and Consensus Problems in Groups of Interacting Agents. Readership: Graduate students and researchers in physics, applied mathematics and engineering.

The Beauty of Fractals

The Beauty of Fractals
Author: Heinz-Otto Peitgen
Publisher: Springer Science & Business Media
Total Pages: 226
Release: 1986-07
Genre: Computers
ISBN: 9783540158516

Now approaching its tenth year, this hugely successful book presents an unusual attempt to publicise the field of Complex Dynamics. The text was originally conceived as a supplemented catalogue to the exhibition "Frontiers of Chaos", seen in Europe and the United States, and describes the context and meaning of these fascinating images. A total of 184 illustrations - including 88 full-colour pictures of Julia sets - are suggestive of a coffee-table book. However, the invited contributions which round off the book lend the text the required formality. Benoit Mandelbrot gives a very personal account, in his idiosyncratic self-centred style, of his discovery of the fractals named after him and Adrien Douady explains the solved and unsolved problems relating to this amusingly complex set.