Queues Applied to Telecoms

Queues Applied to Telecoms
Author: Toky Basilide Ravaliminoarimalalason
Publisher: John Wiley & Sons
Total Pages: 274
Release: 2023-01-19
Genre: Technology & Engineering
ISBN: 1786309041

From queues to telecoms. Queues are, of course, omnipresent in our world, at the bank, the supermarket, the shops, on the road… and yes, they also exist in the domain of telecoms. Queues Applied to Telecoms studies the theoretical aspect of these queues, from Poisson processes, Markov chains and queueing systems to queueing networks. The study of the use of their resources is addressed by the theory of teletraffic. This book also outlines the basic ideas in the theory of teletraffic, presenting the teletraffic of loss systems and waiting systems. However, some applications and explanations are more oriented towards the field of telecommunications, and this book contains lectures and more than sixty corrected exercises to cover these topics. On your marks…

Queueing Theory for Telecommunications

Queueing Theory for Telecommunications
Author: Attahiru Sule Alfa
Publisher: Springer Science & Business Media
Total Pages: 248
Release: 2010-07-28
Genre: Computers
ISBN: 1441973141

Queueing theory applications can be discovered in many walks of life including; transportation, manufacturing, telecommunications, computer systems and more. However, the most prevalent applications of queueing theory are in the telecommunications field. Queueing Theory for Telecommunications: Discrete Time Modelling of a Single Node System focuses on discrete time modeling and illustrates that most queueing systems encountered in real life can be set up as a Markov chain. This feature is very unique because the models are set in such a way that matrix-analytic methods are used to analyze them. Queueing Theory for Telecommunications: Discrete Time Modelling of a Single Node System is the most relevant book available on queueing models designed for applications to telecommunications. This book presents clear concise theories behind how to model and analyze key single node queues in discrete time using special tools that were presented in the second chapter. The text also delves into the types of single node queues that are very frequently encountered in telecommunication systems modeling, and provides simple methods for analyzing them. Where appropriate, alternative analysis methods are also presented. This book is for advanced-level students and researchers concentrating on engineering, computer science and mathematics as a secondary text or reference book. Professionals who work in the related industries of telecommunications, industrial engineering and communications engineering will find this book useful as well.

Queueing Theory with Applications to Packet Telecommunication

Queueing Theory with Applications to Packet Telecommunication
Author: John N. Daigle
Publisher: Springer Science & Business Media
Total Pages: 348
Release: 2005
Genre: Mathematics
ISBN: 9780387228570

Queueing Theory with Applications to Packet Telecommunication is an efficient introduction to fundamental concepts and principles underlying the behavior of queueing systems and its application to the design of packet-oriented electrical communication systems. In addition to techniques and approaches found in earlier works, the author presents a thoroughly modern computational approach based on Schur decomposition. This approach facilitates solution of broad classes of problems wherein a number of practical modeling issues may be explored. Key features of communication systems, such as correlation in packet arrival processes at IP switches and variability in service rates due to fading wireless links are introduced. Numerous exercises embedded within the text and problems at the end of certain chapters that integrate lessons learned across multiple sections are also included. In all cases, including systems having priority, developments lead to procedures or formulae that yield numerical results from which sensitivity of queueing behavior to parameter variation can be explored. In several cases multiple approaches to computing distributions are presented. Queueing Theory with Applications to Packet Telecommunication is intended both for self study and for use as a primary text in graduate courses in queueing theory in electrical engineering, computer science, operations research, and mathematics. Professionals will also find this work invaluable because the author discusses applications such as statistical multiplexing, IP switch design, and wireless communication systems. In addition, numerous modeling issues, such as the suitability of Erlang-k and Pade approximations are addressed.

A Tutorial on Queuing and Trunking with Applications to Communications

A Tutorial on Queuing and Trunking with Applications to Communications
Author: William Tranter
Publisher: Springer Nature
Total Pages: 92
Release: 2022-05-31
Genre: Technology & Engineering
ISBN: 3031016793

The motivation for developing this synthesis lecture was to provide a tutorial on queuing and trunking, with extensions to networks of queues, suitable for supplementing courses in communications, stochastic processes, and networking. An essential component of this lecture is MATLAB-based demonstrations and exercises, which can be easily modified to enable the student to observe and evaluate the impact of changing parameters, arrival and departure statistics, queuing disciplines, the number of servers, and other important aspects of the underlying system model. Much of the work in this lecture is based on Poisson statistics, since Poisson models are useful due to the fact that Poisson models are analytically tractable and provide a useful approximation for many applications. We recognize that the validity of Poisson statistics is questionable for a number of networking applications and therefore we briefly discuss self-similar models and the Hurst parameter, long-term dependent models, the Pareto distribution, and other related topics. Appropriate references are given for continued study on these topics. The initial chapters of this book consider individual queues in isolation. The systems studied consist of an arrival process, a single queue with a particular queuing discipline, and one or more servers. While this allows us to study the basic concepts of queuing and trunking, modern data networks consist of many queues that interact in complex ways. While many of these interactions defy analysis, the final chapter introduces a model of a network of queues in which, after being served in one queue, customers may join another queue. The key result for this model is known as Jackson's Theorem. Finally, we state the BCMP Theorem, which can be viewed as a further extension of Jackson's Theorem and present Kleinrock's formula, which can be viewed as the network version of Little's Theorem. Table of Contents: Introduction / Poisson, Erlang, and Pareto Distributions / A Brief Introduction to Queueing Theory / Blocking and Delay / Networks of Queues

Introduction to Queueing Systems with Telecommunication Applications

Introduction to Queueing Systems with Telecommunication Applications
Author: Laszlo Lakatos
Publisher: Springer Science & Business Media
Total Pages: 388
Release: 2012-12-15
Genre: Mathematics
ISBN: 1461453178

The book is composed of two main parts: mathematical background and queueing systems with applications. The mathematical background is a self containing introduction to the stochastic processes of the later studies queueing systems. It starts with a quick introduction to probability theory and stochastic processes and continues with chapters on Markov chains and regenerative processes. More recent advances of queueing systems are based on phase type distributions, Markov arrival processes and quasy birth death processes, which are introduced in the last chapter of the first part. The second part is devoted to queueing models and their applications. After the introduction of the basic Markovian (from M/M/1 to M/M/1//N) and non-Markovian (M/G/1, G/M/1) queueing systems, a chapter presents the analysis of queues with phase type distributions, Markov arrival processes (from PH/M/1 to MAP/PH/1/K). The next chapter presents the classical queueing network results and the rest of this part is devoted to the application examples. There are queueing models for bandwidth charing with different traffic classes, slotted multiplexers, ATM switches, media access protocols like Aloha and IEEE 802.11b, priority systems and retrial systems. An appendix supplements the technical content with Laplace and z transformation rules, Bessel functions and a list of notations. The book contains examples and exercises throughout and could be used for graduate students in engineering, mathematics and sciences.

Queuing Theory and Telecommunications

Queuing Theory and Telecommunications
Author: Giovanni Giambene
Publisher: Springer Nature
Total Pages: 424
Release: 2021-10-29
Genre: Technology & Engineering
ISBN: 3030759733

This thoroughly revised textbook provides a description of current networking technologies and protocols as well as important new tools for network performance analysis based on queuing theory. The third edition adds topics such as network virtualization and new related architectures, novel satellite systems (such as Space X, OneWeb), jitter and its impact on streaming services, packet level FEC techniques and network coding, new Markovian models, and advanced details on M/G/1 queuing models. The author also adds new selected exercises throughout the chapters and a new version of the slides and the solution manual. The book maintains its organization with networking technologies and protocols in Part I and then theory and exercises with applications to the different technologies and protocols in Part II. This book is intended as a textbook for master level courses in networking and telecommunications sectors.

Queueing Theory with Applications to Packet Telecommunication

Queueing Theory with Applications to Packet Telecommunication
Author: John Daigle
Publisher: Springer Science & Business Media
Total Pages: 326
Release: 2006-01-16
Genre: Technology & Engineering
ISBN: 0387228594

Queueing Theory with Applications to Packet Telecommunication is an efficient introduction to fundamental concepts and principles underlying the behavior of queueing systems and its application to the design of packet-oriented electrical communication systems. In addition to techniques and approaches found in earlier works, the author presents a thoroughly modern computational approach based on Schur decomposition. This approach facilitates solution of broad classes of problems wherein a number of practical modeling issues may be explored. Key features of communication systems, such as correlation in packet arrival processes at IP switches and variability in service rates due to fading wireless links are introduced. Numerous exercises embedded within the text and problems at the end of certain chapters that integrate lessons learned across multiple sections are also included. In all cases, including systems having priority, developments lead to procedures or formulae that yield numerical results from which sensitivity of queueing behavior to parameter variation can be explored. In several cases multiple approaches to computing distributions are presented. Queueing Theory with Applications to Packet Telecommunication is intended both for self study and for use as a primary text in graduate courses in queueing theory in electrical engineering, computer science, operations research, and mathematics. Professionals will also find this work invaluable because the author discusses applications such as statistical multiplexing, IP switch design, and wireless communication systems. In addition, numerous modeling issues, such as the suitability of Erlang-k and Pade approximations are addressed.

Introduction to Queueing Systems with Telecommunication Applications

Introduction to Queueing Systems with Telecommunication Applications
Author: László Lakatos
Publisher: Springer
Total Pages: 568
Release: 2019-05-16
Genre: Mathematics
ISBN: 3030151425

The book is the extended and revised version of the 1st edition and is composed of two main parts: mathematical background and queueing systems with applications. The mathematical background is a self-containing introduction to the stochastic processes of the later studied queueing systems. It starts with a quick introduction to probability theory and stochastic processes and continues with chapters on Markov chains and regenerative processes. More recent advances of queueing systems are based on phase type distributions, Markov arrival processes and quasy birth death processes, which are introduced in the last chapter of the first part. The second part is devoted to queueing models and their applications. After the introduction of the basic Markovian (from M/M/1 to M/M/1//N) and non-Markovian (M/G/1, G/M/1) queueing systems, a chapter presents the analysis of queues with phase type distributions, Markov arrival processes (from PH/M/1 to MAP/PH/1/K). The next chapter presents the classical queueing network results and the rest of this part is devoted to the application examples. There are queueing models for bandwidth charing with different traffic classes, slotted multiplexers, media access protocols like Aloha and IEEE 802.11b, priority systems and retrial systems. An appendix supplements the technical content with Laplace and z transformation rules, Bessel functions and a list of notations. The book contains examples and exercises throughout and could be used for graduate students in engineering, mathematics and sciences. Reviews of first edition: "The organization of the book is such that queueing models are viewed as special cases of more general stochastic processes, such as birth-death or semi-Markov processes. ... this book is a valuable addition to the queuing literature and provides instructors with a viable alternative for a textbook to be used in a one- or two-semester course on queueing models, at the upper undergraduate or beginning graduate levels." Charles Knessl, SIAM Review, Vol. 56 (1), March, 2014

Queueing Networks

Queueing Networks
Author: Richard J. Boucherie
Publisher: Springer Science & Business Media
Total Pages: 814
Release: 2010-11-25
Genre: Mathematics
ISBN: 144196472X

This handbook aims to highlight fundamental, methodological and computational aspects of networks of queues to provide insights and to unify results that can be applied in a more general manner. The handbook is organized into five parts: Part 1 considers exact analytical results such as of product form type. Topics include characterization of product forms by physical balance concepts and simple traffic flow equations, classes of service and queue disciplines that allow a product form, a unified description of product forms for discrete time queueing networks, insights for insensitivity, and aggregation and decomposition results that allow sub networks to be aggregated into single nodes to reduce computational burden. Part 2 looks at monotonicity and comparison results such as for computational simplification by either of two approaches: stochastic monotonicity and ordering results based on the ordering of the process generators, and comparison results and explicit error bounds based on an underlying Markov reward structure leading to ordering of expectations of performance measures. Part 3 presents diffusion and fluid results. It specifically looks at the fluid regime and the diffusion regime. Both of these are illustrated through fluid limits for the analysis of system stability, diffusion approximations for multi-server systems, and a system fed by Gaussian traffic. Part 4 illustrates computational and approximate results through the classical MVA (mean value analysis) and QNA (queueing network analyzer) for computing mean and variance of performance measures such as queue lengths and sojourn times; numerical approximation of response time distributions; and approximate decomposition results for large open queueing networks. spanPart 5 enlightens selected applications as spanloss networks originating from circuit switched telecommunications applications, capacity sharing originating from packet switching in data networks, and a hospital application that is of growing present day interest. spanThe book shows that spanthe intertwined progress of theory and practicespan will remain to be most intriguing and will continue to be the basis of further developments in queueing networks.

Applied Discrete-Time Queues

Applied Discrete-Time Queues
Author: Attahiru Alfa
Publisher: Springer
Total Pages: 400
Release: 2015-12-26
Genre: Technology & Engineering
ISBN: 1493934201

This book introduces the theoretical fundamentals for modeling queues in discrete-time, and the basic procedures for developing queuing models in discrete-time. There is a focus on applications in modern telecommunication systems. It presents how most queueing models in discrete-time can be set up as discrete-time Markov chains. Techniques such as matrix-analytic methods (MAM) that can used to analyze the resulting Markov chains are included. This book covers single node systems, tandem system and queueing networks. It shows how queues with time-varying parameters can be analyzed, and illustrates numerical issues associated with computations for the discrete-time queueing systems. Optimal control of queues is also covered. Applied Discrete-Time Queues targets researchers, advanced-level students and analysts in the field of telecommunication networks. It is suitable as a reference book and can also be used as a secondary text book in computer engineering and computer science. Examples and exercises are included.