Quantum Topology And Global Anomalies

Quantum Topology And Global Anomalies
Author: Randy A Baadhio
Publisher: World Scientific
Total Pages: 286
Release: 1996-09-03
Genre: Science
ISBN: 9814498777

Anomalies are ubiquitous features in quantum field theories. They can ruin the consistency of such theories and put significant restrictions on their viability, especially in dimensions higher than four. Global gauge and gravitational anomalies are to date, one of the scant powerful and probing tools available to physicists in the pursuit of uniqueness.This monograph is one of the very few that specializes in the study of global anomalies in quantum field theories. A discussion of various issues associated to three dimensional physics — the Chern-Simons-Witten theories — widen the scope of this book. Topics discussed here comprises: the ongoing quest for three-manifolds invariant, the role of the mapping class groups in (a) the detection and cancellation of global anomalies, (b) formulating three-manifolds invariant; the geometric quantization of Chern-Simons-Witten theories; deformation quantization; study of chiral and gravitational anomalies; anomalies and the Atiyah-Patodi-Singer Index theorem; exotic spheres; global gravitational anomalies in some six and ten dimensional supergravity and superstring theories, with an additional case study of Witten SU(2) Global Gauge Anomalies.In addition, five chapters lay out the mathematical basis for a thorough use of the topics above. One chapter focuses on the relationship between Teichmüller spaces, moduli spaces and mapping class groups. Another chapter is devoted to mapping class groups and arithmetic groups. Gauge theories on Riemann surfaces are studies in well over two chapters, the first one centered on the theory of bundles and the second on connections.Many readers will find this a useful book, especially theoretical physicists and mathematicians. The material presented here will be of interest to both the experts who will find complete, detailed and precise descriptions of important topics of current interest in mathematical physics, and to students and newcomers to the field, who will appreciate the vast amount of information provided here, especially on global anomalies.

Anomalies in Quantum Field Theory

Anomalies in Quantum Field Theory
Author: Reinhold A. Bertlmann
Publisher: Oxford University Press
Total Pages: 590
Release: 2000-11-02
Genre: Science
ISBN: 9780198507628

This text presents the different aspects of the study of anomalies. Much emphasis is now being placed on the formulation of the theory using the mathematical ideas of differential geometry and topology. It includes derivations and calculations

Quantum Topology

Quantum Topology
Author: Louis H Kauffman
Publisher: World Scientific
Total Pages: 391
Release: 1993-09-15
Genre: Science
ISBN: 9814502677

This book constitutes a review volume on the relatively new subject of Quantum Topology. Quantum Topology has its inception in the 1984/1985 discoveries of new invariants of knots and links (Jones, Homfly and Kauffman polynomials). These invariants were rapidly connected with quantum groups and methods in statistical mechanics. This was followed by Edward Witten's introduction of methods of quantum field theory into the subject and the formulation by Witten and Michael Atiyah of the concept of topological quantum field theories.This book is a review volume of on-going research activity. The papers derive from talks given at the Special Session on Knot and Topological Quantum Field Theory of the American Mathematical Society held at Dayton, Ohio in the fall of 1992. The book consists of a self-contained article by Kauffman, entitled Introduction to Quantum Topology and eighteen research articles by participants in the special session.This book should provide a useful source of ideas and results for anyone interested in the interface between topology and quantum field theory.

Path Integrals and Quantum Anomalies

Path Integrals and Quantum Anomalies
Author: Kazuo Fujikawa
Publisher: OUP Oxford
Total Pages: 297
Release: 2004-04-29
Genre: Science
ISBN: 019152381X

The Feynman path integrals are becoming increasingly important in the applications of quantum mechanics and field theory. The path integral formulation of quantum anomalies, i.e. the quantum breaking of certain symmetries, can now cover all the known quantum anomalies in a coherent manner. In this book the authors provide an introduction to the path integral method in quantum field theory and its applications to the analyses of quantum anomalies. No previous knowledge of field theory beyond advanced undergraduate quantum mechanics is assumed. The book provides the first coherent introductory treatment of the path integral formulation of chiral and Weyl anomalies, with applications to gauge theory in two and four dimensions, conformal field theory and string theory. Explicit and elementary path integral calculations of most of the quantum anomalies covered are given. The conceptual basis of the path integral bosonization in two-dimensional theory, which may have applications to condensed matter theory, for example, is clarified. The book also covers the recent interesting developments in the treatment of fermions and chiral anomalies in lattice gauge theory.

Quantum Topology

Quantum Topology
Author: Louis H. Kauffman
Publisher: World Scientific
Total Pages: 400
Release: 1993
Genre: Mathematics
ISBN: 9789810225759

This book constitutes a review volume on the relatively new subject of Quantum Topology. Quantum Topology has its inception in the 1984/1985 discoveries of new invariants of knots and links (Jones, Homfly and Kauffman polynomials). These invariants were rapidly connected with quantum groups and methods in statistical mechanics. This was followed by Edward Witten's introduction of methods of quantum field theory into the subject and the formulation by Witten and Michael Atiyah of the concept of topological quantum field theories.This book is a review volume of on-going research activity. The papers derive from talks given at the Special Session on Knot and Topological Quantum Field Theory of the American Mathematical Society held at Dayton, Ohio in the fall of 1992. The book consists of a self-contained article by Kauffman, entitled Introduction to Quantum Topology and eighteen research articles by participants in the special session.This book should provide a useful source of ideas and results for anyone interested in the interface between topology and quantum field theory.

Lectures on Field Theory and Topology

Lectures on Field Theory and Topology
Author: Daniel S. Freed
Publisher: American Mathematical Soc.
Total Pages: 202
Release: 2019-08-23
Genre: Mathematics
ISBN: 1470452065

These lectures recount an application of stable homotopy theory to a concrete problem in low energy physics: the classification of special phases of matter. While the joint work of the author and Michael Hopkins is a focal point, a general geometric frame of reference on quantum field theory is emphasized. Early lectures describe the geometric axiom systems introduced by Graeme Segal and Michael Atiyah in the late 1980s, as well as subsequent extensions. This material provides an entry point for mathematicians to delve into quantum field theory. Classification theorems in low dimensions are proved to illustrate the framework. The later lectures turn to more specialized topics in field theory, including the relationship between invertible field theories and stable homotopy theory, extended unitarity, anomalies, and relativistic free fermion systems. The accompanying mathematical explanations touch upon (higher) category theory, duals to the sphere spectrum, equivariant spectra, differential cohomology, and Dirac operators. The outcome of computations made using the Adams spectral sequence is presented and compared to results in the condensed matter literature obtained by very different means. The general perspectives and specific applications fuse into a compelling story at the interface of contemporary mathematics and theoretical physics.

Current Algebra and Anomalies

Current Algebra and Anomalies
Author: Sam Treiman
Publisher: Princeton University Press
Total Pages: 550
Release: 2014-07-14
Genre: Science
ISBN: 1400854563

Current algebra remains our most successful analysis of fundamental particle interactions. This collection of surveys on current algebra and anomalies is a successor volume to Lectures on Current Algebra and Its Applications (Princeton Series in Physics, 1972). Originally published in 1986. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.

Differential Topology and Quantum Field Theory

Differential Topology and Quantum Field Theory
Author: Charles Nash
Publisher: Elsevier
Total Pages: 404
Release: 1991
Genre: Mathematics
ISBN: 9780125140768

The remarkable developments in differential topology and how these recent advances have been applied as a primary research tool in quantum field theory are presented here in a style reflecting the genuinely two-sided interaction between mathematical physics and applied mathematics. The author, following his previous work (Nash/Sen: Differential Topology for Physicists, Academic Press, 1983), covers elliptic differential and pseudo-differential operators, Atiyah-Singer index theory, topological quantum field theory, string theory, and knot theory. The explanatory approach serves to illuminate and clarify these theories for graduate students and research workers entering the field for the first time. Treats differential geometry, differential topology, and quantum field theory Includes elliptic differential and pseudo-differential operators, Atiyah-Singer index theory, topological quantum field theory, string theory, and knot theory Tackles problems of quantum field theory using differential topology as a tool

Quantization of Singular Symplectic Quotients

Quantization of Singular Symplectic Quotients
Author: N.P. Landsman
Publisher: Birkhäuser
Total Pages: 360
Release: 2012-12-06
Genre: Mathematics
ISBN: 3034883641

This is the first exposition of the quantization theory of singular symplectic (Marsden-Weinstein) quotients and their applications to physics. The reader will acquire an introduction to the various techniques used in this area, as well as an overview of the latest research approaches. These involve classical differential and algebraic geometry, as well as operator algebras and noncommutative geometry. Thus one will be amply prepared to follow future developments in this field.