Quantum Groups and Their Primitive Ideals

Quantum Groups and Their Primitive Ideals
Author: Anthony Joseph
Publisher: Springer Science & Business Media
Total Pages: 394
Release: 2012-12-06
Genre: Mathematics
ISBN: 3642784003

by a more general quadratic algebra (possibly obtained by deformation) and then to derive Rq [G] by requiring it to possess the latter as a comodule. A third principle is to focus attention on the tensor structure of the cat egory of (!; modules. This means of course just defining an algebra structure on Rq[G]; but this is to be done in a very specific manner. Concretely the category is required to be braided and this forces (9.4.2) the existence of an "R-matrix" satisfying in particular the quantum Yang-Baxter equation and from which the algebra structure of Rq[G] can be written down (9.4.5). Finally there was a search for a perfectly self-dual model for Rq[G] which would then be isomorphic to Uq(g). Apparently this failed; but V. G. Drinfeld found that it could be essentially made to work for the "Borel part" of Uq(g) denoted U (b) and further found a general construction (the Drinfeld double) q mirroring a Lie bialgebra. This gives Uq(g) up to passage to a quotient. One of the most remarkable aspects of the above superficially different ap proaches is their extraordinary intercoherence. In particular they essentially all lead for G semisimple to the same and hence "canonical", objects Rq[G] and Uq(g), though this epithet may as yet be premature.

Lectures on Algebraic Quantum Groups

Lectures on Algebraic Quantum Groups
Author: Ken Brown
Publisher: Birkhäuser
Total Pages: 339
Release: 2012-12-06
Genre: Mathematics
ISBN: 303488205X

This book consists of an expanded set of lectures on algebraic aspects of quantum groups. It particularly concentrates on quantized coordinate rings of algebraic groups and spaces and on quantized enveloping algebras of semisimple Lie algebras. Large parts of the material are developed in full textbook style, featuring many examples and numerous exercises; other portions are discussed with sketches of proofs, while still other material is quoted without proof.

Studies in Lie Theory

Studies in Lie Theory
Author: Joseph Bernstein
Publisher: Springer Science & Business Media
Total Pages: 508
Release: 2006-07-27
Genre: Mathematics
ISBN: 0817644784

Contains new results on different aspects of Lie theory, including Lie superalgebras, quantum groups, crystal bases, representations of reductive groups in finite characteristic, and the geometric Langlands program

Introduction to Quantum Groups

Introduction to Quantum Groups
Author: George Lusztig
Publisher: Springer Science & Business Media
Total Pages: 361
Release: 2010-10-27
Genre: Mathematics
ISBN: 0817647171

The quantum groups discussed in this book are the quantized enveloping algebras introduced by Drinfeld and Jimbo in 1985, or variations thereof. The theory of quantum groups has led to a new, extremely rigid structure, in which the objects of the theory are provided with canonical basis with rather remarkable properties. This book will be of interest to mathematicians working in the representation theory of Lie groups and Lie algebras, knot theorists and to theoretical physicists and graduate students. Since large parts of the book are independent of the theory of perverse sheaves, the book could also be used as a text book.

Noncommutative Geometry and Representation Theory in Mathematical Physics

Noncommutative Geometry and Representation Theory in Mathematical Physics
Author: Jürgen Fuchs
Publisher: American Mathematical Soc.
Total Pages: 402
Release: 2005
Genre: Mathematics
ISBN: 0821837184

Mathematics provides a language in which to formulate the laws that govern nature. It is a language proven to be both powerful and effective. In the quest for a deeper understanding of the fundamental laws of physics, one is led to theories that are increasingly difficult to put to the test. In recent years, many novel questions have emerged in mathematical physics, particularly in quantum field theory. Indeed, several areas of mathematics have lately become increasingly influentialin physics and, in turn, have become influenced by developments in physics. Over the last two decades, interactions between mathematicians and physicists have increased enormously and have resulted in a fruitful cross-fertilization of the two communities. This volume contains the plenary talks fromthe international symposium on Noncommutative Geometry and Representation Theory in Mathematical Physics held at Karlstad University (Sweden) as a satellite conference to the Fourth European Congress of Mathematics. The scope of the volume is large and its content is relevant to various scientific communities interested in noncommutative geometry and representation theory. It offers a comprehensive view of the state of affairs for these two branches of mathematical physics. The book is suitablefor graduate students and researchers interested in mathematical physics.

Proceedings of the Third International Algebra Conference

Proceedings of the Third International Algebra Conference
Author: Yuen Fong
Publisher: Springer Science & Business Media
Total Pages: 268
Release: 2013-11-11
Genre: Mathematics
ISBN: 940170337X

This volume contains one invited lecture which was presented by the 1994 Fields Medal ist Professor E. Zelmanov and twelve other papers which were presented at the Third International Conference on Algebra and Their Related Topics at Chang Jung Christian University, Tainan, Republic of China, during the period June 26-July 1, 200l. All papers in this volume have been refereed by an international referee board and we would like to express our deepest thanks to all the referees who were so helpful and punctual in submitting their reports. Thanks are also due to the Promotion and Research Center of National Science Council of Republic of China and the Chang Jung Christian University for their generous financial support of this conference. The spirit of this conference is a continuation of the last two International Tainan Moscow Algebra Workshop on Algebras and Their Related Topics which were held in the mid-90's of the last century. The purpose of this very conference was to give a clear picture of the recent development and research in the fields of different kinds of algebras both in Taiwan and in the rest ofthe world, especially say, Russia" Europe, North America and South America. Thus, we were hoping to enhance the possibility of future cooperation in research work among the algebraists ofthe five continents. Here we would like to point out that this algebra gathering will constantly be held in the future in the southern part of Taiwan.

Proceedings of the International Conference on Complex Geometry and Related Fields

Proceedings of the International Conference on Complex Geometry and Related Fields
Author: Zhijie Chen
Publisher: American Mathematical Soc.
Total Pages: 414
Release: 2007
Genre: Mathematics
ISBN: 0821839497

In commemoration and celebration of the tenth anniversary of the Institute of Mathematics at East China Normal University, an International Conference on complex geometry and related fields recently convened. This collection presents some of the conference highlights, dealing with various and significant topics of differential and algebraic geometry, while exploring their connections to number theory and mathematical physics. Information for our distributors: Titles in this series are co-published with International Press, Cambridge, MA.

Representations and Nilpotent Orbits of Lie Algebraic Systems

Representations and Nilpotent Orbits of Lie Algebraic Systems
Author: Maria Gorelik
Publisher: Springer Nature
Total Pages: 563
Release: 2019-10-18
Genre: Mathematics
ISBN: 3030235319

This volume, a celebration of Anthony Joseph’s fundamental influence on classical and quantized representation theory, explores a wide array of current topics in Lie theory by experts in the area. The chapters are based on the 2017 sister conferences titled “Algebraic Modes of Representations,” the first of which was held from July 16-18 at the Weizmann Institute of Science and the second from July 19-23 at the University of Haifa. The chapters in this volume cover a range of topics, including: Primitive ideals Invariant theory Geometry of Lie group actions Quantum affine algebras Yangians Categorification Vertex algebras This volume is addressed to mathematicians who specialize in representation theory and Lie theory, and who wish to learn more about this fascinating subject.

Algebraic Structures and Their Representations

Algebraic Structures and Their Representations
Author: José Antonio de la Peña
Publisher: American Mathematical Soc.
Total Pages: 466
Release: 2005
Genre: Mathematics
ISBN: 0821836307

The Latin-American conference on algebra, the XV Coloquio Latinoamericano de Algebra (Cocoyoc, Mexico), consisted of plenary sessions of general interest and special sessions on algebraic combinatorics, associative rings, cohomology of rings and algebras, commutative algebra, group representations, Hopf algebras, number theory, quantum groups, and representation theory of algebras. This proceedings volume contains original research papers related to talks at the colloquium. In addition, there are several surveys presenting important topics to a broad mathematical audience. There are also two invited papers by Raymundo Bautista and Roberto Martinez, founders of the Mexican school of representation theory of algebras. The book is suitable for graduate students and researchers interested in algebra.

Quantum Groups and Their Representations

Quantum Groups and Their Representations
Author: Anatoli Klimyk
Publisher: Springer Science & Business Media
Total Pages: 568
Release: 2012-12-06
Genre: Science
ISBN: 3642608965

This book start with an introduction to quantum groups for the beginner and continues as a textbook for graduate students in physics and in mathematics. It can also be used as a reference by more advanced readers. The authors cover a large but well-chosen variety of subjects from the theory of quantum groups (quantized universal enveloping algebras, quantized algebras of functions) and q-deformed algebras (q-oscillator algebras), their representations and corepresentations, and noncommutative differential calculus. The book is written with potential applications in physics and mathematics in mind. The basic quantum groups and quantum algebras and their representations are given in detail and accompanied by explicit formulas. A number of topics and results from the more advanced general theory are developed and discussed.