Quantitative Trading
Download Quantitative Trading full books in PDF, epub, and Kindle. Read online free Quantitative Trading ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Ernie Chan |
Publisher | : John Wiley & Sons |
Total Pages | : 230 |
Release | : 2013-05-28 |
Genre | : Business & Economics |
ISBN | : 1118460146 |
Praise for Algorithmic TRADING “Algorithmic Trading is an insightful book on quantitative trading written by a seasoned practitioner. What sets this book apart from many others in the space is the emphasis on real examples as opposed to just theory. Concepts are not only described, they are brought to life with actual trading strategies, which give the reader insight into how and why each strategy was developed, how it was implemented, and even how it was coded. This book is a valuable resource for anyone looking to create their own systematic trading strategies and those involved in manager selection, where the knowledge contained in this book will lead to a more informed and nuanced conversation with managers.” —DAREN SMITH, CFA, CAIA, FSA, Managing Director, Manager Selection & Portfolio Construction, University of Toronto Asset Management “Using an excellent selection of mean reversion and momentum strategies, Ernie explains the rationale behind each one, shows how to test it, how to improve it, and discusses implementation issues. His book is a careful, detailed exposition of the scientific method applied to strategy development. For serious retail traders, I know of no other book that provides this range of examples and level of detail. His discussions of how regime changes affect strategies, and of risk management, are invaluable bonuses.” —ROGER HUNTER, Mathematician and Algorithmic Trader
Author | : Ernest P. Chan |
Publisher | : John Wiley & Sons |
Total Pages | : 277 |
Release | : 2017-02-06 |
Genre | : Business & Economics |
ISBN | : 1119219604 |
Dive into algo trading with step-by-step tutorials and expert insight Machine Trading is a practical guide to building your algorithmic trading business. Written by a recognized trader with major institution expertise, this book provides step-by-step instruction on quantitative trading and the latest technologies available even outside the Wall Street sphere. You'll discover the latest platforms that are becoming increasingly easy to use, gain access to new markets, and learn new quantitative strategies that are applicable to stocks, options, futures, currencies, and even bitcoins. The companion website provides downloadable software codes, and you'll learn to design your own proprietary tools using MATLAB. The author's experiences provide deep insight into both the business and human side of systematic trading and money management, and his evolution from proprietary trader to fund manager contains valuable lessons for investors at any level. Algorithmic trading is booming, and the theories, tools, technologies, and the markets themselves are evolving at a rapid pace. This book gets you up to speed, and walks you through the process of developing your own proprietary trading operation using the latest tools. Utilize the newer, easier algorithmic trading platforms Access markets previously unavailable to systematic traders Adopt new strategies for a variety of instruments Gain expert perspective into the human side of trading The strength of algorithmic trading is its versatility. It can be used in any strategy, including market-making, inter-market spreading, arbitrage, or pure speculation; decision-making and implementation can be augmented at any stage, or may operate completely automatically. Traders looking to step up their strategy need look no further than Machine Trading for clear instruction and expert solutions.
Author | : Christian L. Dunis |
Publisher | : John Wiley & Sons |
Total Pages | : 426 |
Release | : 2004-01-09 |
Genre | : Business & Economics |
ISBN | : 0470871342 |
This book provides a manual on quantitative financial analysis. Focusing on advanced methods for modelling financial markets in the context of practical financial applications, it will cover data, software and techniques that will enable the reader to implement and interpret quantitative methodologies, specifically for trading and investment. Includes contributions from an international team of academics and quantitative asset managers from Morgan Stanley, Barclays Global Investors, ABN AMRO and Credit Suisse First Boston. Fills the gap for a book on applied quantitative investment & trading models Provides details of how to combine various models to manage and trade a portfolio
Author | : Scott Patterson |
Publisher | : Currency |
Total Pages | : 354 |
Release | : 2011-01-25 |
Genre | : Business & Economics |
ISBN | : 0307453383 |
With the immediacy of today’s NASDAQ close and the timeless power of a Greek tragedy, The Quants is at once a masterpiece of explanatory journalism, a gripping tale of ambition and hubris, and an ominous warning about Wall Street’s future. In March of 2006, four of the world’s richest men sipped champagne in an opulent New York hotel. They were preparing to compete in a poker tournament with million-dollar stakes, but those numbers meant nothing to them. They were accustomed to risking billions. On that night, these four men and their cohorts were the new kings of Wall Street. Muller, Griffin, Asness, and Weinstein were among the best and brightest of a new breed, the quants. Over the prior twenty years, this species of math whiz--technocrats who make billions not with gut calls or fundamental analysis but with formulas and high-speed computers--had usurped the testosterone-fueled, kill-or-be-killed risk-takers who’d long been the alpha males the world’s largest casino. The quants helped create a digitized money-trading machine that could shift billions around the globe with the click of a mouse. Few realized, though, that in creating this unprecedented machine, men like Muller, Griffin, Asness and Weinstein had sowed the seeds for history’s greatest financial disaster. Drawing on unprecedented access to these four number-crunching titans, The Quants tells the inside story of what they thought and felt in the days and weeks when they helplessly watched much of their net worth vaporize--and wondered just how their mind-bending formulas and genius-level IQ’s had led them so wrong, so fast.
Author | : Paul Wilmott |
Publisher | : John Wiley & Sons |
Total Pages | : 397 |
Release | : 2010-05-27 |
Genre | : Business & Economics |
ISBN | : 0470972963 |
Paul Wilmott writes, "Quantitative finance is the most fascinating and rewarding real-world application of mathematics. It is fascinating because of the speed at which the subject develops, the new products and the new models which we have to understand. And it is rewarding because anyone can make a fundamental breakthrough. "Having worked in this field for many years, I have come to appreciate the importance of getting the right balance between mathematics and intuition. Too little maths and you won't be able to make much progress, too much maths and you'll be held back by technicalities. I imagine, but expect I will never know for certain, that getting the right level of maths is like having the right equipment to climb Mount Everest; too little and you won't make the first base camp, too much and you'll collapse in a heap before the top. "Whenever I write about or teach this subject I also aim to get the right mix of theory and practice. Finance is not a hard science like physics, so you have to accept the limitations of the models. But nor is it a very soft science, so without those models you would be at a disadvantage compared with those better equipped. I believe this adds to the fascination of the subject. "This FAQs book looks at some of the most important aspects of financial engineering, and considers them from both theoretical and practical points of view. I hope that you will see that finance is just as much fun in practice as in theory, and if you are reading this book to help you with your job interviews, good luck! Let me know how you get on!"
Author | : Xin Guo |
Publisher | : CRC Press |
Total Pages | : 414 |
Release | : 2017-01-06 |
Genre | : Business & Economics |
ISBN | : 1315354357 |
The first part of this book discusses institutions and mechanisms of algorithmic trading, market microstructure, high-frequency data and stylized facts, time and event aggregation, order book dynamics, trading strategies and algorithms, transaction costs, market impact and execution strategies, risk analysis, and management. The second part covers market impact models, network models, multi-asset trading, machine learning techniques, and nonlinear filtering. The third part discusses electronic market making, liquidity, systemic risk, recent developments and debates on the subject.
Author | : Harry Georgakopoulos |
Publisher | : Springer |
Total Pages | : 364 |
Release | : 2015-02-02 |
Genre | : Business & Economics |
ISBN | : 1137437472 |
Quantitative Finance with R offers a winning strategy for devising expertly-crafted and workable trading models using the R open source programming language, providing readers with a step-by-step approach to understanding complex quantitative finance problems and building functional computer code.
Author | : Sheldon Natenberg |
Publisher | : McGraw Hill Professional |
Total Pages | : 485 |
Release | : 1994-08 |
Genre | : Business & Economics |
ISBN | : 155738486X |
Provides a thorough discussion of volatility, the most important aspect of options trading. Shows how to identify mispriced options and to construct volatility and "delta neutral" spreads.
Author | : Stefan Jansen |
Publisher | : Packt Publishing Ltd |
Total Pages | : 822 |
Release | : 2020-07-31 |
Genre | : Business & Economics |
ISBN | : 1839216786 |
Leverage machine learning to design and back-test automated trading strategies for real-world markets using pandas, TA-Lib, scikit-learn, LightGBM, SpaCy, Gensim, TensorFlow 2, Zipline, backtrader, Alphalens, and pyfolio. Purchase of the print or Kindle book includes a free eBook in the PDF format. Key FeaturesDesign, train, and evaluate machine learning algorithms that underpin automated trading strategiesCreate a research and strategy development process to apply predictive modeling to trading decisionsLeverage NLP and deep learning to extract tradeable signals from market and alternative dataBook Description The explosive growth of digital data has boosted the demand for expertise in trading strategies that use machine learning (ML). This revised and expanded second edition enables you to build and evaluate sophisticated supervised, unsupervised, and reinforcement learning models. This book introduces end-to-end machine learning for the trading workflow, from the idea and feature engineering to model optimization, strategy design, and backtesting. It illustrates this by using examples ranging from linear models and tree-based ensembles to deep-learning techniques from cutting edge research. This edition shows how to work with market, fundamental, and alternative data, such as tick data, minute and daily bars, SEC filings, earnings call transcripts, financial news, or satellite images to generate tradeable signals. It illustrates how to engineer financial features or alpha factors that enable an ML model to predict returns from price data for US and international stocks and ETFs. It also shows how to assess the signal content of new features using Alphalens and SHAP values and includes a new appendix with over one hundred alpha factor examples. By the end, you will be proficient in translating ML model predictions into a trading strategy that operates at daily or intraday horizons, and in evaluating its performance. What you will learnLeverage market, fundamental, and alternative text and image dataResearch and evaluate alpha factors using statistics, Alphalens, and SHAP valuesImplement machine learning techniques to solve investment and trading problemsBacktest and evaluate trading strategies based on machine learning using Zipline and BacktraderOptimize portfolio risk and performance analysis using pandas, NumPy, and pyfolioCreate a pairs trading strategy based on cointegration for US equities and ETFsTrain a gradient boosting model to predict intraday returns using AlgoSeek's high-quality trades and quotes dataWho this book is for If you are a data analyst, data scientist, Python developer, investment analyst, or portfolio manager interested in getting hands-on machine learning knowledge for trading, this book is for you. This book is for you if you want to learn how to extract value from a diverse set of data sources using machine learning to design your own systematic trading strategies. Some understanding of Python and machine learning techniques is required.
Author | : Christian L. Dunis |
Publisher | : Springer |
Total Pages | : 349 |
Release | : 2016-11-21 |
Genre | : Business & Economics |
ISBN | : 1137488808 |
As technology advancement has increased, so to have computational applications for forecasting, modelling and trading financial markets and information, and practitioners are finding ever more complex solutions to financial challenges. Neural networking is a highly effective, trainable algorithmic approach which emulates certain aspects of human brain functions, and is used extensively in financial forecasting allowing for quick investment decision making. This book presents the most cutting-edge artificial intelligence (AI)/neural networking applications for markets, assets and other areas of finance. Split into four sections, the book first explores time series analysis for forecasting and trading across a range of assets, including derivatives, exchange traded funds, debt and equity instruments. This section will focus on pattern recognition, market timing models, forecasting and trading of financial time series. Section II provides insights into macro and microeconomics and how AI techniques could be used to better understand and predict economic variables. Section III focuses on corporate finance and credit analysis providing an insight into corporate structures and credit, and establishing a relationship between financial statement analysis and the influence of various financial scenarios. Section IV focuses on portfolio management, exploring applications for portfolio theory, asset allocation and optimization. This book also provides some of the latest research in the field of artificial intelligence and finance, and provides in-depth analysis and highly applicable tools and techniques for practitioners and researchers in this field.