Python Image Processing Cookbook

Python Image Processing Cookbook
Author: Sandipan Dey
Publisher:
Total Pages: 438
Release: 2020-04-17
Genre: Computers
ISBN: 9781789537147

Advancements in wireless devices and mobile technology have enabled the acquisition of a tremendous amount of graphics, pictures, and videos. Through cutting edge recipes, this book provides coverage on tools, algorithms, and analysis for image processing. This book provides solutions addressing the challenges and complex tasks of image processing.

Hands-On Image Processing with Python

Hands-On Image Processing with Python
Author: Sandipan Dey
Publisher: Packt Publishing Ltd
Total Pages: 483
Release: 2018-11-30
Genre: Computers
ISBN: 178934185X

Explore the mathematical computations and algorithms for image processing using popular Python tools and frameworks. Key FeaturesPractical coverage of every image processing task with popular Python librariesIncludes topics such as pseudo-coloring, noise smoothing, computing image descriptorsCovers popular machine learning and deep learning techniques for complex image processing tasksBook Description Image processing plays an important role in our daily lives with various applications such as in social media (face detection), medical imaging (X-ray, CT-scan), security (fingerprint recognition) to robotics & space. This book will touch the core of image processing, from concepts to code using Python. The book will start from the classical image processing techniques and explore the evolution of image processing algorithms up to the recent advances in image processing or computer vision with deep learning. We will learn how to use image processing libraries such as PIL, scikit-mage, and scipy ndimage in Python. This book will enable us to write code snippets in Python 3 and quickly implement complex image processing algorithms such as image enhancement, filtering, segmentation, object detection, and classification. We will be able to use machine learning models using the scikit-learn library and later explore deep CNN, such as VGG-19 with Keras, and we will also use an end-to-end deep learning model called YOLO for object detection. We will also cover a few advanced problems, such as image inpainting, gradient blending, variational denoising, seam carving, quilting, and morphing. By the end of this book, we will have learned to implement various algorithms for efficient image processing. What you will learnPerform basic data pre-processing tasks such as image denoising and spatial filtering in PythonImplement Fast Fourier Transform (FFT) and Frequency domain filters (e.g., Weiner) in PythonDo morphological image processing and segment images with different algorithmsLearn techniques to extract features from images and match imagesWrite Python code to implement supervised / unsupervised machine learning algorithms for image processingUse deep learning models for image classification, segmentation, object detection and style transferWho this book is for This book is for Computer Vision Engineers, and machine learning developers who are good with Python programming and want to explore details and complexities of image processing. No prior knowledge of the image processing techniques is expected.

OpenCV 3 Computer Vision with Python Cookbook

OpenCV 3 Computer Vision with Python Cookbook
Author: Aleksei Spizhevoi
Publisher: Packt Publishing Ltd
Total Pages: 296
Release: 2018-03-23
Genre: Computers
ISBN: 1788478754

OpenCV 3 is a native cross-platform library for computer vision, machine learning, and image processing. OpenCV's convenient high-level APIs hide very powerful internals designed for computational efficiency that can take advantage of multicore and GPU processing. This book will help you tackle increasingly challenging computer vision problems ...

Python Image Processing Cookbook

Python Image Processing Cookbook
Author: Sandipan Dey
Publisher: Packt Publishing Ltd
Total Pages: 429
Release: 2020-04-17
Genre: Computers
ISBN: 1789535182

Explore Keras, scikit-image, open source computer vision (OpenCV), Matplotlib, and a wide range of other Python tools and frameworks to solve real-world image processing problems Key FeaturesDiscover solutions to complex image processing tasks using Python tools such as scikit-image and KerasLearn popular concepts such as machine learning, deep learning, and neural networks for image processingExplore common and not-so-common challenges faced in image processingBook Description With the advancements in wireless devices and mobile technology, there's increasing demand for people with digital image processing skills in order to extract useful information from the ever-growing volume of images. This book provides comprehensive coverage of the relevant tools and algorithms, and guides you through analysis and visualization for image processing. With the help of over 60 cutting-edge recipes, you'll address common challenges in image processing and learn how to perform complex tasks such as object detection, image segmentation, and image reconstruction using large hybrid datasets. Dedicated sections will also take you through implementing various image enhancement and image restoration techniques, such as cartooning, gradient blending, and sparse dictionary learning. As you advance, you'll get to grips with face morphing and image segmentation techniques. With an emphasis on practical solutions, this book will help you apply deep learning techniques such as transfer learning and fine-tuning to solve real-world problems. By the end of this book, you'll be proficient in utilizing the capabilities of the Python ecosystem to implement various image processing techniques effectively. What you will learnImplement supervised and unsupervised machine learning algorithms for image processingUse deep neural network models for advanced image processing tasksPerform image classification, object detection, and face recognitionApply image segmentation and registration techniques on medical images to assist doctorsUse classical image processing and deep learning methods for image restorationImplement text detection in images using Tesseract, the optical character recognition (OCR) engineUnderstand image enhancement techniques such as gradient blendingWho this book is for This book is for image processing engineers, computer vision engineers, software developers, machine learning engineers, or anyone who wants to become well-versed with image processing techniques and methods using a recipe-based approach. Although no image processing knowledge is expected, prior Python coding experience is necessary to understand key concepts covered in the book.

Image Processing and Acquisition using Python

Image Processing and Acquisition using Python
Author: Ravishankar Chityala
Publisher: CRC Press
Total Pages: 335
Release: 2020-06-11
Genre: Mathematics
ISBN: 0429516525

Image Processing and Acquisition using Python provides readers with a sound foundation in both image acquisition and image processing—one of the first books to integrate these topics together. By improving readers’ knowledge of image acquisition techniques and corresponding image processing, the book will help them perform experiments more effectively and cost efficiently as well as analyze and measure more accurately. Long recognized as one of the easiest languages for non-programmers to learn, Python is used in a variety of practical examples. A refresher for more experienced readers, the first part of the book presents an introduction to Python, Python modules, reading and writing images using Python, and an introduction to images. The second part discusses the basics of image processing, including pre/post processing using filters, segmentation, morphological operations, and measurements. The second part describes image acquisition using various modalities, such as x-ray, CT, MRI, light microscopy, and electron microscopy. These modalities encompass most of the common image acquisition methods currently used by researchers in academia and industry. Features Covers both the physical methods of obtaining images and the analytical processing methods required to understand the science behind the images. Contains many examples, detailed derivations, and working Python examples of the techniques. Offers practical tips on image acquisition and processing. Includes numerous exercises to test the reader’s skills in Python programming and image processing, with solutions to selected problems, example programs, and images available on the book’s web page. New to this edition Machine learning has become an indispensable part of image processing and computer vision, so in this new edition two new chapters are included: one on neural networks and the other on convolutional neural networks. A new chapter on affine transform and many new algorithms. Updated Python code aligned to the latest version of modules.

Image Processing Masterclass with Python

Image Processing Masterclass with Python
Author: Sandipan Dey
Publisher: BPB Publications
Total Pages: 428
Release: 2021-03-10
Genre: Computers
ISBN: 9389898641

Over 50 problems solved with classical algorithms + ML / DL models KEY FEATURESÊ _ Problem-driven approach to practice image processing.Ê _ Practical usage of popular Python libraries: Numpy, Scipy, scikit-image, PIL and SimpleITK. _ End-to-end demonstration of popular facial image processing challenges using MTCNN and MicrosoftÕs Cognitive Vision APIs. Ê DESCRIPTIONÊ This book starts with basic Image Processing and manipulation problems and demonstrates how to solve them with popular Python libraries and modules. It then concentrates on problems based on Geometric image transformations and problems to be solved with Image hashing.Ê Next, the book focuses on solving problems based on Sampling, Convolution, Discrete Fourier transform, Frequency domain filtering and image restoration with deconvolution. It also aims at solving Image enhancement problems using differentÊ algorithms such as spatial filters and create a super resolution image using SRGAN. Finally, it explores popular facial image processing problems and solves them with Machine learning and Deep learning models using popular python ML / DL libraries. WHAT YOU WILL LEARNÊÊ _ Develop strong grip on the fundamentals of Image Processing and Image Manipulation. _ Solve popular Image Processing problems using Machine Learning and Deep Learning models. _ Working knowledge on Python libraries including numpy, scipyÊ and scikit-image. _ Use popular Python Machine Learning packages such as scikit-learn, Keras and pytorch. _ Live implementation of Facial Image Processing techniques such as Face Detection / Recognition / Parsing dlib and MTCNN. WHO THIS BOOK IS FORÊÊÊ This book is designed specially for computer vision users, machine learning engineers, image processing experts who are looking for solving modern image processing/computer vision challenges. TABLE OF CONTENTS 1. Chapter 1: Basic Image & Video Processing 2. Chapter 2: More Image Transformation and Manipulation 3. Chapter 3: Sampling, Convolution and Discrete Fourier Transform 4. Chapter 4: Discrete Cosine / Wavelet Transform and Deconvolution 5. Chapter 5: Image Enhancement 6. Chapter 6: More Image Enhancement 7. Chapter 7: Facel Image Processing

Python Cookbook

Python Cookbook
Author: Alex Martelli
Publisher: "O'Reilly Media, Inc."
Total Pages: 847
Release: 2005-03-18
Genre: Computers
ISBN: 0596554745

Portable, powerful, and a breeze to use, Python is the popular open source object-oriented programming language used for both standalone programs and scripting applications. It is now being used by an increasing number of major organizations, including NASA and Google.Updated for Python 2.4, The Python Cookbook, 2nd Edition offers a wealth of useful code for all Python programmers, not just advanced practitioners. Like its predecessor, the new edition provides solutions to problems that Python programmers face everyday.It now includes over 200 recipes that range from simple tasks, such as working with dictionaries and list comprehensions, to complex tasks, such as monitoring a network and building a templating system. This revised version also includes new chapters on topics such as time, money, and metaprogramming.Here's a list of additional topics covered: Manipulating text Searching and sorting Working with files and the filesystem Object-oriented programming Dealing with threads and processes System administration Interacting with databases Creating user interfaces Network and web programming Processing XML Distributed programming Debugging and testing Another advantage of The Python Cookbook, 2nd Edition is its trio of authors--three well-known Python programming experts, who are highly visible on email lists and in newsgroups, and speak often at Python conferences.With scores of practical examples and pertinent background information, The Python Cookbook, 2nd Edition is the one source you need if you're looking to build efficient, flexible, scalable, and well-integrated systems.

IPython Interactive Computing and Visualization Cookbook

IPython Interactive Computing and Visualization Cookbook
Author: Cyrille Rossant
Publisher: Packt Publishing Ltd
Total Pages: 899
Release: 2014-09-25
Genre: Computers
ISBN: 178328482X

Intended to anyone interested in numerical computing and data science: students, researchers, teachers, engineers, analysts, hobbyists... Basic knowledge of Python/NumPy is recommended. Some skills in mathematics will help you understand the theory behind the computational methods.

Pillow

Pillow
Author: Michael Driscoll
Publisher:
Total Pages: 382
Release: 2021-03-18
Genre:
ISBN:

Pillow: Image Processing with Python is the only book that covers the Pillow package, the friendly fork of the Python Imaging Library (PIL). The first few chapters of the book will get you started down the path of knowledge and help you understand how to use Pillow effectively. This book is printed in FULL COLOR. In Pillow: Image Processing with Python, you will learn how to: Crop photos Apply filters Work with colors Combine photos Extract metadata Drawing text and shapes on image Create simple image GUIs You'll learn all these things and more in this book. Soon you will be able to edit photos like a professional using the Python programming language!

Python Deep Learning Cookbook

Python Deep Learning Cookbook
Author: Indra den Bakker
Publisher: Packt Publishing Ltd
Total Pages: 321
Release: 2017-10-27
Genre: Computers
ISBN: 1787122255

Solve different problems in modelling deep neural networks using Python, Tensorflow, and Keras with this practical guide About This Book Practical recipes on training different neural network models and tuning them for optimal performance Use Python frameworks like TensorFlow, Caffe, Keras, Theano for Natural Language Processing, Computer Vision, and more A hands-on guide covering the common as well as the not so common problems in deep learning using Python Who This Book Is For This book is intended for machine learning professionals who are looking to use deep learning algorithms to create real-world applications using Python. Thorough understanding of the machine learning concepts and Python libraries such as NumPy, SciPy and scikit-learn is expected. Additionally, basic knowledge in linear algebra and calculus is desired. What You Will Learn Implement different neural network models in Python Select the best Python framework for deep learning such as PyTorch, Tensorflow, MXNet and Keras Apply tips and tricks related to neural networks internals, to boost learning performances Consolidate machine learning principles and apply them in the deep learning field Reuse and adapt Python code snippets to everyday problems Evaluate the cost/benefits and performance implication of each discussed solution In Detail Deep Learning is revolutionizing a wide range of industries. For many applications, deep learning has proven to outperform humans by making faster and more accurate predictions. This book provides a top-down and bottom-up approach to demonstrate deep learning solutions to real-world problems in different areas. These applications include Computer Vision, Natural Language Processing, Time Series, and Robotics. The Python Deep Learning Cookbook presents technical solutions to the issues presented, along with a detailed explanation of the solutions. Furthermore, a discussion on corresponding pros and cons of implementing the proposed solution using one of the popular frameworks like TensorFlow, PyTorch, Keras and CNTK is provided. The book includes recipes that are related to the basic concepts of neural networks. All techniques s, as well as classical networks topologies. The main purpose of this book is to provide Python programmers a detailed list of recipes to apply deep learning to common and not-so-common scenarios. Style and approach Unique blend of independent recipes arranged in the most logical manner