Almost Automorphic Type and Almost Periodic Type Functions in Abstract Spaces

Almost Automorphic Type and Almost Periodic Type Functions in Abstract Spaces
Author: Toka Diagana
Publisher: Springer Science & Business Media
Total Pages: 312
Release: 2013-08-13
Genre: Mathematics
ISBN: 3319008498

This book presents a comprehensive introduction to the concepts of almost periodicity, asymptotic almost periodicity, almost automorphy, asymptotic almost automorphy, pseudo-almost periodicity, and pseudo-almost automorphy as well as their recent generalizations. Some of the results presented are either new or else cannot be easily found in the mathematical literature. Despite the noticeable and rapid progress made on these important topics, the only standard references that currently exist on those new classes of functions and their applications are still scattered research articles. One of the main objectives of this book is to close that gap. The prerequisites for the book is the basic introductory course in real analysis. Depending on the background of the student, the book may be suitable for a beginning graduate and/or advanced undergraduate student. Moreover, it will be of a great interest to researchers in mathematics as well as in engineering, in physics, and related areas. Further, some parts of the book may be used for various graduate and undergraduate courses.

Almost Periodic and Almost Automorphic Functions in Abstract Spaces

Almost Periodic and Almost Automorphic Functions in Abstract Spaces
Author: Gaston M. N'Guérékata
Publisher: Springer
Total Pages: 134
Release: 2021-05-29
Genre: Mathematics
ISBN: 9783030737177

This book presents the foundation of the theory of almost automorphic functions in abstract spaces and the theory of almost periodic functions in locally and non-locally convex spaces and their applications in differential equations. Since the publication of Almost automorphic and almost periodic functions in abstract spaces (Kluwer Academic/Plenum, 2001), there has been a surge of interest in the theory of almost automorphic functions and applications to evolution equations. Several generalizations have since been introduced in the literature, including the study of almost automorphic sequences, and the interplay between almost periodicity and almost automorphic has been exposed for the first time in light of operator theory, complex variable functions and harmonic analysis methods. As such, the time has come for a second edition to this work, which was one of the most cited books of the year 2001. This new edition clarifies and improves upon earlier materials, includes many relevant contributions and references in new and generalized concepts and methods, and answers the longtime open problem, "What is the number of almost automorphic functions that are not almost periodic in the sense of Bohr?" Open problems in non-locally convex valued almost periodic and almost automorphic functions are also indicated. As in the first edition, materials are presented in a simplified and rigorous way. Each chapter is concluded with bibliographical notes showing the original sources of the results and further reading.

Almost Automorphic and Almost Periodic Functions in Abstract Spaces

Almost Automorphic and Almost Periodic Functions in Abstract Spaces
Author: Gaston M. N'Guérékata
Publisher: Springer Science & Business Media
Total Pages: 143
Release: 2013-04-17
Genre: Mathematics
ISBN: 147574482X

Almost Automorphic and Almost Periodic Functions in Abstract Spaces introduces and develops the theory of almost automorphic vector-valued functions in Bochner's sense and the study of almost periodic functions in a locally convex space in a homogenous and unified manner. It also applies the results obtained to study almost automorphic solutions of abstract differential equations, expanding the core topics with a plethora of groundbreaking new results and applications. For the sake of clarity, and to spare the reader unnecessary technical hurdles, the concepts are studied using classical methods of functional analysis.

Almost Periodic and Almost Automorphic Solutions to Integro-Differential Equations

Almost Periodic and Almost Automorphic Solutions to Integro-Differential Equations
Author: Marko Kostić
Publisher: Walter de Gruyter GmbH & Co KG
Total Pages: 372
Release: 2019-05-06
Genre: Mathematics
ISBN: 3110641852

This book discusses almost periodic and almost automorphic solutions to abstract integro-differential Volterra equations that are degenerate in time, and in particular equations whose solutions are governed by (degenerate) solution operator families with removable singularities at zero. It particularly covers abstract fractional equations and inclusions with multivalued linear operators as well as abstract fractional semilinear Cauchy problems.

Selected Topics in Almost Periodicity

Selected Topics in Almost Periodicity
Author: Marko Kostić
Publisher: Walter de Gruyter GmbH & Co KG
Total Pages: 734
Release: 2021-11-22
Genre: Mathematics
ISBN: 3110763524

Covers uniformly recurrent solutions and c-almost periodic solutions of abstract Volterra integro-differential equations as well as various generalizations of almost periodic functions in Lebesgue spaces with variable coefficients. Treats multi-dimensional almost periodic type functions and their generalizations in adequate detail.

Semilinear Evolution Equations and Their Applications

Semilinear Evolution Equations and Their Applications
Author: Toka Diagana
Publisher: Springer
Total Pages: 199
Release: 2018-10-23
Genre: Mathematics
ISBN: 303000449X

This book, which is a continuation of Almost Automorphic Type and Almost Periodic Type Functions in Abstract Spaces, presents recent trends and developments upon fractional, first, and second order semilinear difference and differential equations, including degenerate ones. Various stability, uniqueness, and existence results are established using various tools from nonlinear functional analysis and operator theory (such as semigroup methods). Various applications to partial differential equations and the dynamic of populations are amply discussed. This self-contained volume is primarily intended for advanced undergraduate and graduate students, post-graduates and researchers, but may also be of interest to non-mathematicians such as physicists and theoretically oriented engineers. It can also be used as a graduate text on evolution equations and difference equations and their applications to partial differential equations and practical problems arising in population dynamics. For completeness, detailed preliminary background on Banach and Hilbert spaces, operator theory, semigroups of operators, and almost periodic functions and their spectral theory are included as well.

Current Trends in Mathematical Analysis and Its Interdisciplinary Applications

Current Trends in Mathematical Analysis and Its Interdisciplinary Applications
Author: Hemen Dutta
Publisher: Springer Nature
Total Pages: 912
Release: 2019-08-23
Genre: Mathematics
ISBN: 3030152421

This book explores several important aspects of recent developments in the interdisciplinary applications of mathematical analysis (MA), and highlights how MA is now being employed in many areas of scientific research. Each of the 23 carefully reviewed chapters was written by experienced expert(s) in respective field, and will enrich readers’ understanding of the respective research problems, providing them with sufficient background to understand the theories, methods and applications discussed. The book’s main goal is to highlight the latest trends and advances, equipping interested readers to pursue further research of their own. Given its scope, the book will especially benefit graduate and PhD students, researchers in the applied sciences, educators, and engineers with an interest in recent developments in the interdisciplinary applications of mathematical analysis.

Almost Periodic Type Functions and Ergodicity

Almost Periodic Type Functions and Ergodicity
Author: Zhang Chuanyi
Publisher: Springer Science & Business Media
Total Pages: 372
Release: 2003-06-30
Genre: Mathematics
ISBN: 9781402011580

The theory of almost periodic functions was first developed by the Danish mathematician H. Bohr during 1925-1926. Then Bohr's work was substantially extended by S. Bochner, H. Weyl, A. Besicovitch, J. Favard, J. von Neumann, V. V. Stepanov, N. N. Bogolyubov, and oth ers. Generalization of the classical theory of almost periodic functions has been taken in several directions. One direction is the broader study of functions of almost periodic type. Related this is the study of ergodic ity. It shows that the ergodicity plays an important part in the theories of function spectrum, semigroup of bounded linear operators, and dynamical systems. The purpose of this book is to develop a theory of almost pe riodic type functions and ergodicity with applications-in particular, to our interest-in the theory of differential equations, functional differen tial equations and abstract evolution equations. The author selects these topics because there have been many (excellent) books on almost periodic functions and relatively, few books on almost periodic type and ergodicity. The author also wishes to reflect new results in the book during recent years. The book consists of four chapters. In the first chapter, we present a basic theory of four almost periodic type functions. Section 1. 1 is about almost periodic functions. To make the reader easily learn the almost periodicity, we first discuss it in scalar case. After studying a classical theory for this case, we generalize it to finite dimensional vector-valued case, and finally, to Banach-valued (including Hilbert-valued) situation.

Advances in Interdisciplinary Mathematical Research

Advances in Interdisciplinary Mathematical Research
Author: Bourama Toni
Publisher: Springer Science & Business Media
Total Pages: 296
Release: 2014-07-08
Genre: Mathematics
ISBN: 1461463459

This volume contains the invited contributions to the Spring 2012 seminar series at Virginia State University on Mathematical Sciences and Applications. It is a thematic continuation of work presented in Volume 24 of the Springer Proceedings in Mathematics & Statistics series. Contributors present their own work as leading researchers to advance their specific fields and induce a genuine interdisciplinary interaction. Thus all articles therein are selective, self-contained, and are pedagogically exposed to foster student interest in science, technology, engineering and mathematics, stimulate graduate and undergraduate research, as well as collaboration between researchers from different areas. The volume features new advances in mathematical research and its applications: anti-periodicity; almost stochastic difference equations; absolute and conditional stability in delayed equations; gamma-convergence and applications to block copolymer morphology; the dynamics of collision and near-collision in celestial mechanics; almost and pseudo-almost limit cycles; rainbows in spheres and connections to ray, wave and potential scattering theory; null-controllability of the heat equation with constraints; optimal control for systems subjected to null-controllability; the Galerkin method for heat transfer in closed channels; wavelet transforms for real-time noise cancellation; signal, image processing and machine learning in medicine and biology; methodology for research on durability, reliability, damage tolerance of aerospace materials and structures at NASA Langley Research Center. The volume is suitable and valuable for mathematicians, scientists and research students in a variety of interdisciplinary fields, namely physical and life sciences, engineering and technology including structures and materials sciences, computer science for signal, image processing and machine learning in medicine.