Integrodifference Equations in Spatial Ecology

Integrodifference Equations in Spatial Ecology
Author: Frithjof Lutscher
Publisher: Springer Nature
Total Pages: 390
Release: 2019-10-30
Genre: Mathematics
ISBN: 3030292940

This book is the first thorough introduction to and comprehensive treatment of the theory and applications of integrodifference equations in spatial ecology. Integrodifference equations are discrete-time continuous-space dynamical systems describing the spatio-temporal dynamics of one or more populations. The book contains step-by-step model construction, explicitly solvable models, abstract theory and numerical recipes for integrodifference equations. The theory in the book is motivated and illustrated by many examples from conservation biology, biological invasions, pattern formation and other areas. In this way, the book conveys the more general message that bringing mathematical approaches and ecological questions together can generate novel insights into applications and fruitful challenges that spur future theoretical developments. The book is suitable for graduate students and experienced researchers in mathematical ecology alike.

Reaction-diffusion Waves

Reaction-diffusion Waves
Author: Arnaud Ducrot
Publisher: Editions Publibook
Total Pages: 119
Release: 2009
Genre: Differential operators
ISBN: 2748346319

Structured Population Models in Biology and Epidemiology

Structured Population Models in Biology and Epidemiology
Author: Pierre Magal
Publisher: Springer
Total Pages: 314
Release: 2008-04-12
Genre: Mathematics
ISBN: 3540782737

In this new century mankind faces ever more challenging environmental and publichealthproblems,suchaspollution,invasionbyexoticspecies,theem- gence of new diseases or the emergence of diseases into new regions (West Nile virus,SARS,Anthrax,etc.),andtheresurgenceofexistingdiseases(in?uenza, malaria, TB, HIV/AIDS, etc.). Mathematical models have been successfully used to study many biological, epidemiological and medical problems, and nonlinear and complex dynamics have been observed in all of those contexts. Mathematical studies have helped us not only to better understand these problems but also to ?nd solutions in some cases, such as the prediction and control of SARS outbreaks, understanding HIV infection, and the investi- tion of antibiotic-resistant infections in hospitals. Structuredpopulationmodelsdistinguishindividualsfromoneanother- cording to characteristics such as age, size, location, status, and movement, to determine the birth, growth and death rates, interaction with each other and with environment, infectivity, etc. The goal of structured population models is to understand how these characteristics a?ect the dynamics of these models and thus the outcomes and consequences of the biological and epidemiolo- cal processes. There is a very large and growing body of literature on these topics. This book deals with the recent and important advances in the study of structured population models in biology and epidemiology. There are six chapters in this book, written by leading researchers in these areas.

Spatial Dynamics and Pattern Formation in Biological Populations

Spatial Dynamics and Pattern Formation in Biological Populations
Author: Ranjit Kumar Upadhyay
Publisher: Chapman & Hall/CRC
Total Pages: 0
Release: 2021
Genre: Mathematics
ISBN: 9781000334241

The book provides an introduction to deterministic (and some stochastic) modeling of spatiotemporal phenomena in ecology, epidemiology, and neural systems. A survey of the classical models in the fields with up to date applications is given. The book begins with detailed description of how spatial dynamics/diffusive processes influence the dynamics of biological populations. These processes play a key role in understanding the outbreak and spread of pandemics which help us in designing the control strategies from the public health perspective. A brief discussion on the functional mechanism of the brain (single neuron models and network level) with classical models of neuronal dynamics in space and time is given. Relevant phenomena and existing modeling approaches in ecology, epidemiology and neuroscience are introduced, which provide examples of pattern formation in these models. The analysis of patterns enables us to study the dynamics of macroscopic and microscopic behaviour of underlying systems and travelling wave type patterns observed in dispersive systems. Moving on to virus dynamics, authors present a detailed analysis of different types models of infectious diseases including two models for influenza, five models for Ebola virus and seven models for Zika virus with diffusion and time delay. A Chapter is devoted for the study of Brain Dynamics (Neural systems in space and time). Significant advances made in modeling the reaction-diffusion systems are presented and spatiotemporal patterning in the systems is reviewed. Development of appropriate mathematical models and detailed analysis (such as linear stability, weakly nonlinear analysis, bifurcation analysis, control theory, numerical simulation) are presented. Key Features Covers the fundamental concepts and mathematical skills required to analyse reaction-diffusion models for biological populations. Concepts are introduced in such a way that readers with a basic knowledge of differential equations and numerical methods can understand the analysis. The results are also illustrated with figures. Focuses on mathematical modeling and numerical simulations using basic conceptual and classic models of population dynamics, Virus and Brain dynamics. Covers wide range of models using spatial and non-spatial approaches. Covers single, two and multispecies reaction-diffusion models from ecology and models from bio-chemistry. Models are analysed for stability of equilibrium points, Turing instability, Hopf bifurcation and pattern formations. Uses Mathematica for problem solving and MATLAB for pattern formations. Contains solved Examples and Problems in Exercises. The Book is suitable for advanced undergraduate, graduate and research students. For those who are working in the above areas, it provides information from most of the recent works. The text presents all the fundamental concepts and mathematical skills needed to build models and perform analyses.

Theory and Applications of Hopf Bifurcation

Theory and Applications of Hopf Bifurcation
Author: B. D. Hassard
Publisher: CUP Archive
Total Pages: 324
Release: 1981-02-27
Genre: Mathematics
ISBN: 9780521231589

This text will be of value to all those interested in and studying the subject in the mathematical, natural and engineering sciences.

Allee Effects in Ecology and Conservation

Allee Effects in Ecology and Conservation
Author: Franck Courchamp
Publisher: Oxford University Press
Total Pages: 267
Release: 2008-02-14
Genre: Nature
ISBN: 0198570309

Allee effects are relevant to biologists who study rarity, and to conservationists and managers who try and protect endangered populations. This book provides an overview of the Allee effect, the mechanisms which drive it and its consequences for population dynamics, evolution and conservation.

The Mathematics Behind Biological Invasions

The Mathematics Behind Biological Invasions
Author: Mark A. Lewis
Publisher: Springer
Total Pages: 373
Release: 2016-05-05
Genre: Mathematics
ISBN: 3319320432

This book investigates the mathematical analysis of biological invasions. Unlike purely qualitative treatments of ecology, it draws on mathematical theory and methods, equipping the reader with sharp tools and rigorous methodology. Subjects include invasion dynamics, species interactions, population spread, long-distance dispersal, stochastic effects, risk analysis, and optimal responses to invaders. While based on the theory of dynamical systems, including partial differential equations and integrodifference equations, the book also draws on information theory, machine learning, Monte Carlo methods, optimal control, statistics, and stochastic processes. Applications to real biological invasions are included throughout. Ultimately, the book imparts a powerful principle: that by bringing ecology and mathematics together, researchers can uncover new understanding of, and effective response strategies to, biological invasions. It is suitable for graduate students and established researchers in mathematical ecology.

Biological Invasions: Theory and Practice

Biological Invasions: Theory and Practice
Author: Nanako Shigesada
Publisher: Oxford University Press, UK
Total Pages: 222
Release: 1997-02-06
Genre:
ISBN: 0191589829

This book deals with the ecological effect a species can have when it moves into an environment that it has not previously occupied (commonly referred to as an 'Invasion'). It is unique in presenting a clear and accessible introduction to a highly complex area - the modelling of biological invasions. The book presents the latest theories and models developed from studies into this crucial area. It includes data and examples from biological case studies showing how the models can be applied to the study of invasions, whether dealing with AIDS, the European rabbit, or prickly pear cactuses. - ;In nature, all organisms migrate or disperse to some extent, either by walking, swimming, flying, or being transported by wind or water. When a species succeeds in colonising an area that it has not previously inhabited, this is referred to as an `invasion'. Humans can precipitate biological invasions often spreading disease or pests by their travels around the world. Using the large amount of data that has been collected from studies worldwide, ranging from pest control to epidemiology, it has been possible to construct mathematical models that can predict which species will become an invader, what kind of habitat is susceptible to invasion by a particular species, and how fast an invasion will spread if it occurs. This book presents a clear and accessible introduction to this highly complex area. Included are data and examples from biological case studies showing how these models can be applied to the study of invasions, whether dealing with AIDS, the European rabbit, or prickly pear cactuses. -

Nonlocal Diffusion Problems

Nonlocal Diffusion Problems
Author: Fuensanta Andreu-Vaillo
Publisher: American Mathematical Soc.
Total Pages: 274
Release: 2010
Genre: Mathematics
ISBN: 0821852302

Nonlocal diffusion problems arise in a wide variety of applications, including biology, image processing, particle systems, coagulation models, and mathematical finance. These types of problems are also of great interest for their purely mathematical content. This book presents recent results on nonlocal evolution equations with different boundary conditions, starting with the linear theory and moving to nonlinear cases, including two nonlocal models for the evolution of sandpiles. Both existence and uniqueness of solutions are considered, as well as their asymptotic behaviour. Moreover, the authors present results concerning limits of solutions of the nonlocal equations as a rescaling parameter tends to zero. With these limit procedures the most frequently used diffusion models are recovered: the heat equation, the $p$-Laplacian evolution equation, the porous media equation, the total variation flow, a convection-diffusion equation and the local models for the evolution of sandpiles due to Aronsson-Evans-Wu and Prigozhin. Readers are assumed to be familiar with the basic concepts and techniques of functional analysis and partial differential equations. The text is otherwise self-contained, with the exposition emphasizing an intuitive understanding and results given with full proofs. It is suitable for graduate students or researchers. The authors cover a subject that has received a great deal of attention in recent years. The book is intended as a reference tool for a general audience in analysis and PDEs, including mathematicians, engineers, physicists, biologists, and others interested in nonlocal diffusion problems.