Proof Theory And Automated Deduction
Download Proof Theory And Automated Deduction full books in PDF, epub, and Kindle. Read online free Proof Theory And Automated Deduction ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Jean Goubault-Larrecq |
Publisher | : Springer Science & Business Media |
Total Pages | : 448 |
Release | : 2001-11-30 |
Genre | : Computers |
ISBN | : 9781402003684 |
Interest in computer applications has led to a new attitude to applied logic in which researchers tailor a logic in the same way they define a computer language. In response to this attitude, this text for undergraduate and graduate students discusses major algorithmic methodologies, and tableaux and resolution methods. The authors focus on first-order logic, the use of proof theory, and the computer application of automated searches for proofs of mathematical propositions. Annotation copyrighted by Book News, Inc., Portland, OR
Author | : Dov M. Gabbay |
Publisher | : Springer Science & Business Media |
Total Pages | : 282 |
Release | : 2000-08-31 |
Genre | : Philosophy |
ISBN | : 9780792364733 |
Goal Directed Proof Theory presents a uniform and coherent methodology for automated deduction in non-classical logics, the relevance of which to computer science is now widely acknowledged. The methodology is based on goal-directed provability. It is a generalization of the logic programming style of deduction, and it is particularly favourable for proof search. The methodology is applied for the first time in a uniform way to a wide range of non-classical systems, covering intuitionistic, intermediate, modal and substructural logics. The book can also be used as an introduction to these logical systems form a procedural perspective. Readership: Computer scientists, mathematicians and philosophers, and anyone interested in the automation of reasoning based on non-classical logics. The book is suitable for self study, its only prerequisite being some elementary knowledge of logic and proof theory.
Author | : Heinrich Wansing |
Publisher | : Springer Science & Business Media |
Total Pages | : 334 |
Release | : 1996-10-31 |
Genre | : Computers |
ISBN | : 9780792341208 |
This volume deals with formal, mechanizable reasoning in modal logics, that is, logics of necessity, possibility, belief, time computations etc. It is therefore of immense interest for various interrelated disciplines such as philosophy, AI, computer science, logic, cognitive science and linguistics. The book consists of 15 original research papers, divided into three parts. The first part contains papers which give a profound description of powerful proof-theoretic methods as applied to the normal modal logic S4. Part II is concerned with a number of generalizations of the standard proof-theoretic formats, while the third part presents new and important results on semantics-based proof systems for modal logic.
Author | : George Metcalfe |
Publisher | : Springer Science & Business Media |
Total Pages | : 279 |
Release | : 2008-11-27 |
Genre | : Mathematics |
ISBN | : 1402094094 |
Fuzzy logics are many-valued logics that are well suited to reasoning in the context of vagueness. They provide the basis for the wider field of Fuzzy Logic, encompassing diverse areas such as fuzzy control, fuzzy databases, and fuzzy mathematics. This book provides an accessible and up-to-date introduction to this fast-growing and increasingly popular area. It focuses in particular on the development and applications of "proof-theoretic" presentations of fuzzy logics; the result of more than ten years of intensive work by researchers in the area, including the authors. In addition to providing alternative elegant presentations of fuzzy logics, proof-theoretic methods are useful for addressing theoretical problems (including key standard completeness results) and developing efficient deduction and decision algorithms. Proof-theoretic presentations also place fuzzy logics in the broader landscape of non-classical logics, revealing deep relations with other logics studied in Computer Science, Mathematics, and Philosophy. The book builds methodically from the semantic origins of fuzzy logics to proof-theoretic presentations such as Hilbert and Gentzen systems, introducing both theoretical and practical applications of these presentations.
Author | : S.R. Buss |
Publisher | : Elsevier |
Total Pages | : 823 |
Release | : 1998-07-09 |
Genre | : Mathematics |
ISBN | : 0080533183 |
This volume contains articles covering a broad spectrum of proof theory, with an emphasis on its mathematical aspects. The articles should not only be interesting to specialists of proof theory, but should also be accessible to a diverse audience, including logicians, mathematicians, computer scientists and philosophers. Many of the central topics of proof theory have been included in a self-contained expository of articles, covered in great detail and depth.The chapters are arranged so that the two introductory articles come first; these are then followed by articles from core classical areas of proof theory; the handbook concludes with articles that deal with topics closely related to computer science.
Author | : Jean H. Gallier |
Publisher | : Courier Dover Publications |
Total Pages | : 532 |
Release | : 2015-06-18 |
Genre | : Mathematics |
ISBN | : 0486780821 |
This advanced text for undergraduate and graduate students introduces mathematical logic with an emphasis on proof theory and procedures for algorithmic construction of formal proofs. The self-contained treatment is also useful for computer scientists and mathematically inclined readers interested in the formalization of proofs and basics of automatic theorem proving. Topics include propositional logic and its resolution, first-order logic, Gentzen's cut elimination theorem and applications, and Gentzen's sharpened Hauptsatz and Herbrand's theorem. Additional subjects include resolution in first-order logic; SLD-resolution, logic programming, and the foundations of PROLOG; and many-sorted first-order logic. Numerous problems appear throughout the book, and two Appendixes provide practical background information.
Author | : A. S. Troelstra |
Publisher | : Cambridge University Press |
Total Pages | : 436 |
Release | : 2000-07-27 |
Genre | : Computers |
ISBN | : 9780521779111 |
This introduction to the basic ideas of structural proof theory contains a thorough discussion and comparison of various types of formalization of first-order logic. Examples are given of several areas of application, namely: the metamathematics of pure first-order logic (intuitionistic as well as classical); the theory of logic programming; category theory; modal logic; linear logic; first-order arithmetic and second-order logic. In each case the aim is to illustrate the methods in relatively simple situations and then apply them elsewhere in much more complex settings. There are numerous exercises throughout the text. In general, the only prerequisite is a standard course in first-order logic, making the book ideal for graduate students and beginning researchers in mathematical logic, theoretical computer science and artificial intelligence. For the new edition, many sections have been rewritten to improve clarity, new sections have been added on cut elimination, and solutions to selected exercises have been included.
Author | : Sara Negri |
Publisher | : Cambridge University Press |
Total Pages | : 279 |
Release | : 2008-07-10 |
Genre | : Mathematics |
ISBN | : 9780521068420 |
A concise introduction to structural proof theory, a branch of logic studying the general structure of logical and mathematical proofs.
Author | : Paul B. Thistlewaite |
Publisher | : Pitman Publishing |
Total Pages | : 168 |
Release | : 1988 |
Genre | : Mathematics |
ISBN | : |
Author | : John Harrison |
Publisher | : Cambridge University Press |
Total Pages | : 703 |
Release | : 2009-03-12 |
Genre | : Computers |
ISBN | : 0521899575 |
A one-stop reference, self-contained, with theoretical topics presented in conjunction with implementations for which code is supplied.