Projective Varieties Linear Systems And Vector Bundles
Download Projective Varieties Linear Systems And Vector Bundles full books in PDF, epub, and Kindle. Read online free Projective Varieties Linear Systems And Vector Bundles ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Positivity in Algebraic Geometry I
Author | : R.K. Lazarsfeld |
Publisher | : Springer Science & Business Media |
Total Pages | : 414 |
Release | : 2004-08-24 |
Genre | : History |
ISBN | : 9783540225331 |
This two volume work on Positivity in Algebraic Geometry contains a contemporary account of a body of work in complex algebraic geometry loosely centered around the theme of positivity. Topics in Volume I include ample line bundles and linear series on a projective variety, the classical theorems of Lefschetz and Bertini and their modern outgrowths, vanishing theorems, and local positivity. Volume II begins with a survey of positivity for vector bundles, and moves on to a systematic development of the theory of multiplier ideals and their applications. A good deal of this material has not previously appeared in book form, and substantial parts are worked out here in detail for the first time. At least a third of the book is devoted to concrete examples, applications, and pointers to further developments. Volume I is more elementary than Volume II, and, for the most part, it can be read without access to Volume II.
The Adjunction Theory of Complex Projective Varieties
Author | : Mauro C. Beltrametti |
Publisher | : Walter de Gruyter |
Total Pages | : 421 |
Release | : 2011-06-03 |
Genre | : Mathematics |
ISBN | : 3110871742 |
The aim of the series is to present new and important developments in pure and applied mathematics. Well established in the community over two decades, it offers a large library of mathematics including several important classics. The volumes supply thorough and detailed expositions of the methods and ideas essential to the topics in question. In addition, they convey their relationships to other parts of mathematics. The series is addressed to advanced readers wishing to thoroughly study the topic. Editorial Board Lev Birbrair, Universidade Federal do Ceará, Fortaleza, Brasil Victor P. Maslov, Russian Academy of Sciences, Moscow, Russia Walter D. Neumann, Columbia University, New York, USA Markus J. Pflaum, University of Colorado, Boulder, USA Dierk Schleicher, Jacobs University, Bremen, Germany
Geometrical Methods for the Theory of Linear Systems
Author | : C.I. Byrnes |
Publisher | : Springer Science & Business Media |
Total Pages | : 320 |
Release | : 2012-12-06 |
Genre | : Science |
ISBN | : 9400990820 |
The lectures contained in this book were presented at Harvard University in June 1979. The workshop at which they were presented was the third such on algebro-geometric methods. The first was held in 1973 in London and the emphasis was largely on geometric methods. The second was held at Ames Research Center-NASA in 1976. There again the emphasis was on geometric methods, but algebraic geometry was becoming a dominant theme. In the two years after the Ames meeting there was tremendous growth in the applications of algebraic geometry to systems theory and it was becoming clear that much of the algebraic systems theory was very closely related to the geometric systems theory. On this basis we felt that this was the right time to devote a workshop to the applications of algebra and algebraic geometry to linear systems theory. The lectures contained in this volume represent all but one of the tutorial lectures presented at the workshop. The lec ture of Professor Murray Wonham is not contained in this volume and we refer the interested to the archival literature. This workshop was jointly sponsored by a grant from Ames Research Center-NASA and a grant from the Advanced Study Institute Program of NATO. We greatly appreciate the financial support rendered by these two organizations. The American Mathematical Society hosted this meeting as part of their Summer Seminars in Applied Mathematics and will publish the companion volume of con tributed papers.
3264 and All That
Author | : David Eisenbud |
Publisher | : Cambridge University Press |
Total Pages | : 633 |
Release | : 2016-04-14 |
Genre | : Mathematics |
ISBN | : 1107017084 |
3264, the mathematical solution to a question concerning geometric figures.
Introduction to Applied Linear Algebra
Author | : Stephen Boyd |
Publisher | : Cambridge University Press |
Total Pages | : 477 |
Release | : 2018-06-07 |
Genre | : Business & Economics |
ISBN | : 1316518965 |
A groundbreaking introduction to vectors, matrices, and least squares for engineering applications, offering a wealth of practical examples.
Vector Bundles on Complex Projective Spaces
Author | : Christian Okonek |
Publisher | : Springer Science & Business Media |
Total Pages | : 399 |
Release | : 2013-11-11 |
Genre | : Mathematics |
ISBN | : 1475714602 |
These lecture notes are intended as an introduction to the methods of classification of holomorphic vector bundles over projective algebraic manifolds X. To be as concrete as possible we have mostly restricted ourselves to the case X = Fn. According to Serre (GAGA) the classification of holomorphic vector bundles is equivalent to the classification of algebraic vector bundles. Here we have used almost exclusively the language of analytic geometry. The book is intended for students who have a basic knowledge of analytic and (or) algebraic geometry. Some funda mental results from these fields are summarized at the beginning. One of the authors gave a survey in the Seminaire Bourbaki 1978 on the current state of the classification of holomorphic vector bundles overFn. This lecture then served as the basis for a course of lectures in Gottingen in the Winter Semester 78/79. The present work is an extended and up-dated exposition of that course. Because of the introductory nature of this book we have had to leave out some difficult topics such as the restriction theorem of Barth. As compensation we have appended to each sec tion a paragraph in which historical remarks are made, further results indicated and unsolved problems presented. The book is divided into two chapters. Each chapter is subdivided into several sections which in turn are made up of a number of paragraphs. Each section is preceeded by a short description of iv its contents.
Vector Bundles in Algebraic Geometry
Author | : N. J. Hitchin |
Publisher | : Cambridge University Press |
Total Pages | : 359 |
Release | : 1995-03-16 |
Genre | : Mathematics |
ISBN | : 0521498783 |
This book is a collection of survey articles by the main speakers at the 1993 Durham symposium on vector bundles in algebraic geometry.
Lectures on K3 Surfaces
Author | : Daniel Huybrechts |
Publisher | : Cambridge University Press |
Total Pages | : 499 |
Release | : 2016-09-26 |
Genre | : Mathematics |
ISBN | : 1316797252 |
K3 surfaces are central objects in modern algebraic geometry. This book examines this important class of Calabi–Yau manifolds from various perspectives in eighteen self-contained chapters. It starts with the basics and guides the reader to recent breakthroughs, such as the proof of the Tate conjecture for K3 surfaces and structural results on Chow groups. Powerful general techniques are introduced to study the many facets of K3 surfaces, including arithmetic, homological, and differential geometric aspects. In this context, the book covers Hodge structures, moduli spaces, periods, derived categories, birational techniques, Chow rings, and deformation theory. Famous open conjectures, for example the conjectures of Calabi, Weil, and Artin–Tate, are discussed in general and for K3 surfaces in particular, and each chapter ends with questions and open problems. Based on lectures at the advanced graduate level, this book is suitable for courses and as a reference for researchers.
Tangents and Secants of Algebraic Varieties
Author | : F. L. Zak |
Publisher | : American Mathematical Soc. |
Total Pages | : 176 |
Release | : 1993 |
Genre | : Mathematics |
ISBN | : 0821838377 |
"The book is devoted to geometry of algebraic varieties in projective spaces. Among the objects considered in some detail are tangent and secant varieties, Gauss maps, dual varieties, hyperplane sections, projections, and varieties of small codimension. Emphasis is made on the study of interplay between irregular behavior of (higher) secant varieties and irregular tangencies to the original variety. Classification of varieties with unusual tangential properties yields interesting examples many of which arise as orbits of representations of algebraic groups."--ABSTRACT.