Projective Modules and Complete Intersections

Projective Modules and Complete Intersections
Author: Satya Mandal
Publisher: Springer
Total Pages: 121
Release: 2006-11-14
Genre: Mathematics
ISBN: 3540695982

In these notes on "Projective Modules and Complete Intersections" an account on the recent developments in research on this subject is presented. The author's preference for the technique of Patching isotopic isomorphisms due to Quillen, formalized by Plumsted, over the techniques of elementary matrices is evident here. The treatment of Basic Element theory here incorporates Plumstead's idea of the "generalized dimension functions." These notes are highly selfcontained and should be accessible to any graduate student in commutative algebra or algebraic geometry. They include fully self-contained presentations of the theorems of Ferrand-Szpiro, Cowsik-Nori and the techniques of Lindel.

Serre's Problem on Projective Modules

Serre's Problem on Projective Modules
Author: T.Y. Lam
Publisher: Springer Science & Business Media
Total Pages: 412
Release: 2010-05-17
Genre: Mathematics
ISBN: 3540345752

An invaluable summary of research work done in the period from 1978 to the present

Ideals and Reality

Ideals and Reality
Author: Friedrich Ischebeck
Publisher: Springer Science & Business Media
Total Pages: 339
Release: 2005-11-22
Genre: Mathematics
ISBN: 3540263705

Besides giving an introduction to Commutative Algebra - the theory of c- mutative rings - this book is devoted to the study of projective modules and the minimal number of generators of modules and ideals. The notion of a module over a ring R is a generalization of that of a vector space over a field k. The axioms are identical. But whereas every vector space possesses a basis, a module need not always have one. Modules possessing a basis are called free. So a finitely generated free R-module is of the form Rn for some n E IN, equipped with the usual operations. A module is called p- jective, iff it is a direct summand of a free one. Especially a finitely generated R-module P is projective iff there is an R-module Q with P @ Q S Rn for some n. Remarkably enough there do exist nonfree projective modules. Even there are nonfree P such that P @ Rm S Rn for some m and n. Modules P having the latter property are called stably free. On the other hand there are many rings, all of whose projective modules are free, e. g. local rings and principal ideal domains. (A commutative ring is called local iff it has exactly one maximal ideal. ) For two decades it was a challenging problem whether every projective module over the polynomial ring k[X1,. . .

Leavitt Path Algebras and Classical K-Theory

Leavitt Path Algebras and Classical K-Theory
Author: A. A. Ambily
Publisher: Springer Nature
Total Pages: 340
Release: 2020-01-17
Genre: Mathematics
ISBN: 9811516111

The book offers a comprehensive introduction to Leavitt path algebras (LPAs) and graph C*-algebras. Highlighting their significant connection with classical K-theory—which plays an important role in mathematics and its related emerging fields—this book allows readers from diverse mathematical backgrounds to understand and appreciate these structures. The articles on LPAs are mostly of an expository nature and the ones dealing with K-theory provide new proofs and are accessible to interested students and beginners of the field. It is a useful resource for graduate students and researchers working in this field and related areas, such as C*-algebras and symbolic dynamics.

Algebra

Algebra
Author: I.B.S. Passi
Publisher: Birkhäuser
Total Pages: 247
Release: 2012-12-06
Genre: Mathematics
ISBN: 3034899963

The Indian National. Science Academy has planned to bring out monographs on special topics with the aim of providing acce~sible surveys/reviews of topics of current research in various fields. Prof. S.K. Malik, FNA, Editor of Publications INSA asked me in October 1997 to edit a volume on algebra in this series. I invited a number of algebraists, several of them working in group rings, and it is with great satisfaction and sincere thanks to the authors that I present here in Algebra: Some Recent Advances the sixteen contributions received in response to my invitations. I.B.S. Passi On Abelian Difference Sets K. r Arasu* and Surinder K. Sehgal 1. Introduction We review some existence and nonexistence results - new and old - on abelian difference sets. Recent surveys on difference sets can be found in Arasu (1990), Jungnickel (1992a, b), Pott (1995), Jungnickel and Schmidt (1997), and Davis and Jedwab (1996). Standard references for difference sets are Baumert (1971), Beth et al. (1998), and Lander (1983). This article presents a flavour of the subject, by discussing some selected topics. Difference sets are very important in combinatorial design theory and in commu nication engineering while designing sequences with good correlation properties. Our extended bibliography covers a wide variety of papers written in the area of difference sets and related topics.

Commutative Algebra and Algebraic Geometry

Commutative Algebra and Algebraic Geometry
Author: Sudhir Ghorpade
Publisher: American Mathematical Soc.
Total Pages: 192
Release: 2005
Genre: Mathematics
ISBN: 0821836293

The first Joint AMS-India Mathematics Meeting was held in Bangalore (India). This book presents articles written by speakers from a special session on commutative algebra and algebraic geometry. Included are contributions from some leading researchers around the world in this subject area. The volume contains new and original research papers and survey articles suitable for graduate students and researchers interested in commutative algebra and algebraic geometry.

Commutative Algebra

Commutative Algebra
Author: David Eisenbud
Publisher: Springer Science & Business Media
Total Pages: 784
Release: 2013-12-01
Genre: Mathematics
ISBN: 1461253500

This is a comprehensive review of commutative algebra, from localization and primary decomposition through dimension theory, homological methods, free resolutions and duality, emphasizing the origins of the ideas and their connections with other parts of mathematics. The book gives a concise treatment of Grobner basis theory and the constructive methods in commutative algebra and algebraic geometry that flow from it. Many exercises included.

Algebraic Cycles, Sheaves, Shtukas, and Moduli

Algebraic Cycles, Sheaves, Shtukas, and Moduli
Author: Piotr Pragacz
Publisher: Springer Science & Business Media
Total Pages: 240
Release: 2008-03-12
Genre: Mathematics
ISBN: 3764385375

Articles examine the contributions of the great mathematician J. M. Hoene-Wronski. Although much of his work was dismissed during his lifetime, it is now recognized that his work offers valuable insight into the nature of mathematics. The book begins with elementary-level discussions and ends with discussions of current research. Most of the material has never been published before, offering fresh perspectives on Hoene-Wronski’s contributions.