Progress In Evolution Equations
Download Progress In Evolution Equations full books in PDF, epub, and Kindle. Read online free Progress In Evolution Equations ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Kazufumi Ito |
Publisher | : World Scientific |
Total Pages | : 524 |
Release | : 2002 |
Genre | : Science |
ISBN | : 9789812380265 |
Annotation Ito (North Carolina State U.) and Kappel (U. of Graz, Austria) offer a unified presentation of the general approach for well-posedness results using abstract evolution equations, drawing from and modifying the work of K. and Y. Kobayashi and S. Oharu. They also explore abstract approximation results for evolution equations. Their work is not a textbook, but they explain how instructors can use various sections, or combinations of them, as a foundation for a range of courses. Annotation copyrighted by Book News, Inc., Portland, OR
Author | : Victor A. Galaktionov |
Publisher | : Springer Science & Business Media |
Total Pages | : 388 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 1461220505 |
* Introduces a state-of-the-art method for the study of the asymptotic behavior of solutions to evolution partial differential equations. * Written by established mathematicians at the forefront of their field, this blend of delicate analysis and broad application is ideal for a course or seminar in asymptotic analysis and nonlinear PDEs. * Well-organized text with detailed index and bibliography, suitable as a course text or reference volume.
Author | : G F Roach |
Publisher | : CRC Press |
Total Pages | : 268 |
Release | : 1995-04-28 |
Genre | : Mathematics |
ISBN | : 9780582246690 |
This book presents the majority of talks given at an International Converence held recently at the University of Strathclyde in Glasgow. The works presented focus on the analysis of mathematical models of systems evolving with time. The main topics are semigroups and related subjects connected with applications to partial differential equations of evolution type. Topics of particular interest include spectral and asymptotic properties of semigroups, B evolution scattering theory, and coagulation fragmentation phenomena.
Author | : Gisele Ruiz Goldstein |
Publisher | : CRC Press |
Total Pages | : 442 |
Release | : 2003-06-24 |
Genre | : Mathematics |
ISBN | : 9780824709754 |
Celebrating the work of renowned mathematician Jerome A. Goldstein, this reference compiles original research on the theory and application of evolution equations to stochastics, physics, engineering, biology, and finance. The text explores a wide range of topics in linear and nonlinear semigroup theory, operator theory, functional analysis, and linear and nonlinear partial differential equations, and studies the latest theoretical developments and uses of evolution equations in a variety of disciplines. Providing nearly 500 references, the book contains discussions by renowned mathematicians such as H. Brezis, G. Da Prato, N.E. Gretskij, I. Lasiecka, Peter Lax, M. M. Rao, and R. Triggiani.
Author | : L.A. Peletier |
Publisher | : Springer Science & Business Media |
Total Pages | : 347 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 1461201357 |
The study of spatial patterns in extended systems, and their evolution with time, poses challenging questions for physicists and mathematicians alike. Waves on water, pulses in optical fibers, periodic structures in alloys, folds in rock formations, and cloud patterns in the sky: patterns are omnipresent in the world around us. Their variety and complexity make them a rich area of study. In the study of these phenomena an important role is played by well-chosen model equations, which are often simpler than the full equations describing the physical or biological system, but still capture its essential features. Through a thorough analysis of these model equations one hopes to glean a better under standing of the underlying mechanisms that are responsible for the formation and evolution of complex patterns. Classical model equations have typically been second-order partial differential equations. As an example we mention the widely studied Fisher-Kolmogorov or Allen-Cahn equation, originally proposed in 1937 as a model for the interaction of dispersal and fitness in biological populations. As another example we mention the Burgers equation, proposed in 1939 to study the interaction of diffusion and nonlinear convection in an attempt to understand the phenomenon of turbulence. Both of these are nonlinear second-order diffusion equations.
Author | : Sergiu Klainerman |
Publisher | : Springer Science & Business Media |
Total Pages | : 395 |
Release | : 2012-12-06 |
Genre | : Science |
ISBN | : 146122084X |
The main goal of this work is to revisit the proof of the global stability of Minkowski space by D. Christodoulou and S. Klainerman, [Ch-KI]. We provide a new self-contained proof of the main part of that result, which concerns the full solution of the radiation problem in vacuum, for arbitrary asymptotically flat initial data sets. This can also be interpreted as a proof of the global stability of the external region of Schwarzschild spacetime. The proof, which is a significant modification of the arguments in [Ch-Kl], is based on a double null foliation of spacetime instead of the mixed null-maximal foliation used in [Ch-Kl]. This approach is more naturally adapted to the radiation features of the Einstein equations and leads to important technical simplifications. In the first chapter we review some basic notions of differential geometry that are sys tematically used in all the remaining chapters. We then introduce the Einstein equations and the initial data sets and discuss some of the basic features of the initial value problem in general relativity. We shall review, without proofs, well-established results concerning local and global existence and uniqueness and formulate our main result. The second chapter provides the technical motivation for the proof of our main theorem.
Author | : Michael Reissig |
Publisher | : Springer Science & Business Media |
Total Pages | : 448 |
Release | : 2013-03-30 |
Genre | : Mathematics |
ISBN | : 3319001256 |
Progress in Partial Differential Equations is devoted to modern topics in the theory of partial differential equations. It consists of both original articles and survey papers covering a wide scope of research topics in partial differential equations and their applications. The contributors were participants of the 8th ISAAC congress in Moscow in 2011 or are members of the PDE interest group of the ISAAC society. This volume is addressed to graduate students at various levels as well as researchers in partial differential equations and related fields. The readers will find this an excellent resource of both introductory and advanced material. The key topics are: • Linear hyperbolic equations and systems (scattering, symmetrisers) • Non-linear wave models (global existence, decay estimates, blow-up) • Evolution equations (control theory, well-posedness, smoothing) • Elliptic equations (uniqueness, non-uniqueness, positive solutions) • Special models from applications (Kirchhoff equation, Zakharov-Kuznetsov equation, thermoelasticity)
Author | : Reinhard Racke |
Publisher | : CRC Press |
Total Pages | : 322 |
Release | : 2000-06-21 |
Genre | : Mathematics |
ISBN | : 9781584882152 |
Although the study of classical thermoelasticity has provided information on linear systems, only recently have results on the asymptotic behavior completed our basic understanding of the generic behavior of solutions. Through systematic work that began in the 80s, we now also understand the basic features of nonlinear systems. Yet some questions remain open, and the field has lacked a comprehensive survey that explores these past results and presents recent developments. Evolution Equations in Thermoelasticity presents a modern treatment of initial value problems and of initial boundary value problems in both linear and nonlinear thermoelasticity, in one- and multi-dimensional spatial configurations. The authors provide the first self-contained presentation of the subject that offers both introductory parts accessible to graduate students and sophisticated sections valuable to experts.
Author | : Christian Seifert |
Publisher | : Birkhäuser |
Total Pages | : 317 |
Release | : 2022-02-03 |
Genre | : Mathematics |
ISBN | : 9783030893965 |
This open access book provides a solution theory for time-dependent partial differential equations, which classically have not been accessible by a unified method. Instead of using sophisticated techniques and methods, the approach is elementary in the sense that only Hilbert space methods and some basic theory of complex analysis are required. Nevertheless, key properties of solutions can be recovered in an elegant manner. Moreover, the strength of this method is demonstrated by a large variety of examples, showing the applicability of the approach of evolutionary equations in various fields. Additionally, a quantitative theory for evolutionary equations is developed. The text is self-contained, providing an excellent source for a first study on evolutionary equations and a decent guide to the available literature on this subject, thus bridging the gap to state-of-the-art mathematical research.
Author | : Toka Diagana |
Publisher | : Springer |
Total Pages | : 199 |
Release | : 2018-10-23 |
Genre | : Mathematics |
ISBN | : 303000449X |
This book, which is a continuation of Almost Automorphic Type and Almost Periodic Type Functions in Abstract Spaces, presents recent trends and developments upon fractional, first, and second order semilinear difference and differential equations, including degenerate ones. Various stability, uniqueness, and existence results are established using various tools from nonlinear functional analysis and operator theory (such as semigroup methods). Various applications to partial differential equations and the dynamic of populations are amply discussed. This self-contained volume is primarily intended for advanced undergraduate and graduate students, post-graduates and researchers, but may also be of interest to non-mathematicians such as physicists and theoretically oriented engineers. It can also be used as a graduate text on evolution equations and difference equations and their applications to partial differential equations and practical problems arising in population dynamics. For completeness, detailed preliminary background on Banach and Hilbert spaces, operator theory, semigroups of operators, and almost periodic functions and their spectral theory are included as well.