Teaching Machines

Teaching Machines
Author: Audrey Watters
Publisher: MIT Press
Total Pages: 325
Release: 2023-02-07
Genre: Education
ISBN: 026254606X

How ed tech was born: Twentieth-century teaching machines--from Sidney Pressey's mechanized test-giver to B. F. Skinner's behaviorist bell-ringing box. Contrary to popular belief, ed tech did not begin with videos on the internet. The idea of technology that would allow students to "go at their own pace" did not originate in Silicon Valley. In Teaching Machines, education writer Audrey Watters offers a lively history of predigital educational technology, from Sidney Pressey's mechanized positive-reinforcement provider to B. F. Skinner's behaviorist bell-ringing box. Watters shows that these machines and the pedagogy that accompanied them sprang from ideas--bite-sized content, individualized instruction--that had legs and were later picked up by textbook publishers and early advocates for computerized learning. Watters pays particular attention to the role of the media--newspapers, magazines, television, and film--in shaping people's perceptions of teaching machines as well as the psychological theories underpinning them. She considers these machines in the context of education reform, the political reverberations of Sputnik, and the rise of the testing and textbook industries. She chronicles Skinner's attempts to bring his teaching machines to market, culminating in the famous behaviorist's efforts to launch Didak 101, the "pre-verbal" machine that taught spelling. (Alternate names proposed by Skinner include "Autodidak," "Instructomat," and "Autostructor.") Telling these somewhat cautionary tales, Watters challenges what she calls "the teleology of ed tech"--the idea that not only is computerized education inevitable, but technological progress is the sole driver of events.

Teaching Machines and Programming

Teaching Machines and Programming
Author: Kenneth Austwick
Publisher:
Total Pages: 228
Release: 1964
Genre: Computer-assisted instruction
ISBN:

Teaching Machines and Programming covers the significant developments in teaching machines and automated teaching, as well as the major theoretical issues and attributes involved in these procedures. After a brief introduction to teaching machine procedures, this six-chapter text goes on summarizing the industrial and military applications of teaching machines. The succeeding chapters consider the underlying theory, function, and schema of the adaptive teaching system, which are related to recognizable teaching functions performed by a human tutor. The last chapters discuss the development a.

The Technology of Teaching

The Technology of Teaching
Author: B. F. Skinner
Publisher: B. F. Skinner Foundation
Total Pages: 268
Release: 2016-04-26
Genre: Education
ISBN: 099645392X

On Parent's Day, in 1952, B. F. Skinner visited his daughter's fourth grade math class. As he watched the lesson, he became increasingly uncomfortable. Almost every principle of effective teaching that he had studied for more than 20 years was being violated in that classroom. Yet it was a typical class. The teacher showed how to solve the day's problems, then gave the students a worksheet to do. Some children began to work readily while others shifted uncomfortably in their chairs, or raised their hands for help. The teacher went from desk to desk, giving help and feedback. Skinner knew what was needed. Each student should be given a problem tailored precisely to his or her skill level, not to the class average, and every answer needed to be assessed immediately to determine the next step. The task was clearly impossible for one teacher. That afternoon, Skinner set to work on a teaching machine. Today's computers have made the mechanical machine obsolete, but the principles of how to design instruction in steps that lead from a basic level to competent performance are as valid today as they were in the 20th century. This book brings together Skinner's writings on education during the years he was most involved in improving education.

Teaching Machines

Teaching Machines
Author: Bill Ferster
Publisher: JHU Press
Total Pages: 216
Release: 2014-11-17
Genre: Education
ISBN: 1421415402

Technology promises to make learning better, cheaper, faster—but rarely has it kept that promise. The allure of educational technology is easy to understand. Classroom instruction is an expensive and time-consuming process fraught with contradictory theories and frustratingly uneven results. Educators, inspired by machines’ contributions to modern life, have been using technology to facilitate teaching for centuries. In Teaching Machines, Bill Ferster examines past attempts to automate instruction from the earliest use of the postal service for distance education to the current maelstrom surrounding Massive Open Online Courses. He tells the stories of the entrepreneurs and visionaries who, beginning in the colonial era, developed and promoted various instructional technologies. Ferster touches on a wide range of attempts to enhance the classroom experience with machines, from hornbooks, the Chautauqua movement, and correspondence courses to B. F. Skinner’s teaching machine, intelligent tutoring systems, and eLearning. The famed progressive teachers, researchers, and administrators that the book highlights often overcame substantial hurdles to implement their ideas, but not all of them succeeded in improving the quality of education. Teaching Machines provides invaluable new insight into our current debate over the efficacy of educational technology.

The Evolution of American Educational Technology

The Evolution of American Educational Technology
Author: Paul Saettler
Publisher: IAP
Total Pages: 599
Release: 2004-03-01
Genre: Education
ISBN: 1607529785

The primary purpose of this book is to trace the theoretical methodological foundations of American educational technology. It must be emphasized that this work is essentially as history of the process of educational technology rather than of products in the form of devices or media. Although media have played an important rode in educational technology, the reader should not lose sight of the central process which characterizes and underlies the true historical meaning and function of educational technology. Moreover, the assumption is made that all current theory, methodology, and practice rests upon the heritage of the past. Indeed, a common problem in the field has been the failure, in many instances, to take adequate account of past history in planning for the present or the future. A related purpose of this book is to provide a selective survey of research in educational technology as it relates to the American public schools. Such research reviews are not intended to be comprehensive, but were included because of their historical importance and their relevance in understanding the process of educational technology.

Lessons from the Cyberspace Classroom

Lessons from the Cyberspace Classroom
Author: Rena M. Palloff
Publisher: John Wiley & Sons
Total Pages: 227
Release: 2002-02-28
Genre: Education
ISBN: 0787959960

Authors Rena Palloff and Keith Pratt have written a comprehensive reference for faculty to use to hone their skills as online instructors and for students to use to become more effective online learners. Filled with numerous examples from actual online courses and insights from teachers and students, Lessons from the Cyberspace Classroom covers the entire online teaching process. This essential guide offers helpful suggestions for dealing with such critical issues as evaluating effective courseware, working with online classroom dynamics, addressing the needs of the online student, making the transition to online teaching, and promoting the development of the learning community.

Deep Learning for Coders with fastai and PyTorch

Deep Learning for Coders with fastai and PyTorch
Author: Jeremy Howard
Publisher: O'Reilly Media
Total Pages: 624
Release: 2020-06-29
Genre: Computers
ISBN: 1492045497

Deep learning is often viewed as the exclusive domain of math PhDs and big tech companies. But as this hands-on guide demonstrates, programmers comfortable with Python can achieve impressive results in deep learning with little math background, small amounts of data, and minimal code. How? With fastai, the first library to provide a consistent interface to the most frequently used deep learning applications. Authors Jeremy Howard and Sylvain Gugger, the creators of fastai, show you how to train a model on a wide range of tasks using fastai and PyTorch. You’ll also dive progressively further into deep learning theory to gain a complete understanding of the algorithms behind the scenes. Train models in computer vision, natural language processing, tabular data, and collaborative filtering Learn the latest deep learning techniques that matter most in practice Improve accuracy, speed, and reliability by understanding how deep learning models work Discover how to turn your models into web applications Implement deep learning algorithms from scratch Consider the ethical implications of your work Gain insight from the foreword by PyTorch cofounder, Soumith Chintala

Learning for Adaptive and Reactive Robot Control

Learning for Adaptive and Reactive Robot Control
Author: Aude Billard
Publisher: MIT Press
Total Pages: 425
Release: 2022-02-08
Genre: Technology & Engineering
ISBN: 0262367017

Methods by which robots can learn control laws that enable real-time reactivity using dynamical systems; with applications and exercises. This book presents a wealth of machine learning techniques to make the control of robots more flexible and safe when interacting with humans. It introduces a set of control laws that enable reactivity using dynamical systems, a widely used method for solving motion-planning problems in robotics. These control approaches can replan in milliseconds to adapt to new environmental constraints and offer safe and compliant control of forces in contact. The techniques offer theoretical advantages, including convergence to a goal, non-penetration of obstacles, and passivity. The coverage of learning begins with low-level control parameters and progresses to higher-level competencies composed of combinations of skills. Learning for Adaptive and Reactive Robot Control is designed for graduate-level courses in robotics, with chapters that proceed from fundamentals to more advanced content. Techniques covered include learning from demonstration, optimization, and reinforcement learning, and using dynamical systems in learning control laws, trajectory planning, and methods for compliant and force control . Features for teaching in each chapter: applications, which range from arm manipulators to whole-body control of humanoid robots; pencil-and-paper and programming exercises; lecture videos, slides, and MATLAB code examples available on the author’s website . an eTextbook platform website offering protected material[EPS2] for instructors including solutions.

Generative Deep Learning

Generative Deep Learning
Author: David Foster
Publisher: "O'Reilly Media, Inc."
Total Pages: 301
Release: 2019-06-28
Genre: Computers
ISBN: 1492041890

Generative modeling is one of the hottest topics in AI. It’s now possible to teach a machine to excel at human endeavors such as painting, writing, and composing music. With this practical book, machine-learning engineers and data scientists will discover how to re-create some of the most impressive examples of generative deep learning models, such as variational autoencoders,generative adversarial networks (GANs), encoder-decoder models and world models. Author David Foster demonstrates the inner workings of each technique, starting with the basics of deep learning before advancing to some of the most cutting-edge algorithms in the field. Through tips and tricks, you’ll understand how to make your models learn more efficiently and become more creative. Discover how variational autoencoders can change facial expressions in photos Build practical GAN examples from scratch, including CycleGAN for style transfer and MuseGAN for music generation Create recurrent generative models for text generation and learn how to improve the models using attention Understand how generative models can help agents to accomplish tasks within a reinforcement learning setting Explore the architecture of the Transformer (BERT, GPT-2) and image generation models such as ProGAN and StyleGAN