Problems In Differential Equations
Download Problems In Differential Equations full books in PDF, epub, and Kindle. Read online free Problems In Differential Equations ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : J. L. Brenner |
Publisher | : Courier Corporation |
Total Pages | : 180 |
Release | : 2013-11-06 |
Genre | : Mathematics |
ISBN | : 0486782824 |
More than 900 problems and answers explore applications of differential equations to vibrations, electrical engineering, mechanics, and physics. Problem types include both routine and nonroutine, and stars indicate advanced problems. 1963 edition.
Author | : Ravi P. Agarwal |
Publisher | : Springer Nature |
Total Pages | : 394 |
Release | : 2019-09-24 |
Genre | : Mathematics |
ISBN | : 3030263843 |
This book highlights an unprecedented number of real-life applications of differential equations together with the underlying theory and techniques. The problems and examples presented here touch on key topics in the discipline, including first order (linear and nonlinear) differential equations, second (and higher) order differential equations, first order differential systems, the Runge–Kutta method, and nonlinear boundary value problems. Applications include growth of bacterial colonies, commodity prices, suspension bridges, spreading rumors, modeling the shape of a tsunami, planetary motion, quantum mechanics, circulation of blood in blood vessels, price-demand-supply relations, predator-prey relations, and many more. Upper undergraduate and graduate students in Mathematics, Physics and Engineering will find this volume particularly useful, both for independent study and as supplementary reading. While many problems can be solved at the undergraduate level, a number of challenging real-life applications have also been included as a way to motivate further research in this vast and fascinating field.
Author | : Alemdar Hasanov Hasanoğlu |
Publisher | : Springer |
Total Pages | : 264 |
Release | : 2017-07-31 |
Genre | : Mathematics |
ISBN | : 331962797X |
This book presents a systematic exposition of the main ideas and methods in treating inverse problems for PDEs arising in basic mathematical models, though it makes no claim to being exhaustive. Mathematical models of most physical phenomena are governed by initial and boundary value problems for PDEs, and inverse problems governed by these equations arise naturally in nearly all branches of science and engineering. The book’s content, especially in the Introduction and Part I, is self-contained and is intended to also be accessible for beginning graduate students, whose mathematical background includes only basic courses in advanced calculus, PDEs and functional analysis. Further, the book can be used as the backbone for a lecture course on inverse and ill-posed problems for partial differential equations. In turn, the second part of the book consists of six nearly-independent chapters. The choice of these chapters was motivated by the fact that the inverse coefficient and source problems considered here are based on the basic and commonly used mathematical models governed by PDEs. These chapters describe not only these inverse problems, but also main inversion methods and techniques. Since the most distinctive features of any inverse problems related to PDEs are hidden in the properties of the corresponding solutions to direct problems, special attention is paid to the investigation of these properties.
Author | : Alexander Komech |
Publisher | : Springer Science & Business Media |
Total Pages | : 165 |
Release | : 2009-10-05 |
Genre | : Mathematics |
ISBN | : 1441910956 |
This concise book covers the classical tools of Partial Differential Equations Theory in today’s science and engineering. The rigorous theoretical presentation includes many hints, and the book contains many illustrative applications from physics.
Author | : Andrei D. Polyanin |
Publisher | : CRC Press |
Total Pages | : 1584 |
Release | : 2017-11-15 |
Genre | : Mathematics |
ISBN | : 1351643916 |
The Handbook of Ordinary Differential Equations: Exact Solutions, Methods, and Problems, is an exceptional and complete reference for scientists and engineers as it contains over 7,000 ordinary differential equations with solutions. This book contains more equations and methods used in the field than any other book currently available. Included in the handbook are exact, asymptotic, approximate analytical, numerical symbolic and qualitative methods that are used for solving and analyzing linear and nonlinear equations. The authors also present formulas for effective construction of solutions and many different equations arising in various applications like heat transfer, elasticity, hydrodynamics and more. This extensive handbook is the perfect resource for engineers and scientists searching for an exhaustive reservoir of information on ordinary differential equations.
Author | : William E. Boyce |
Publisher | : John Wiley & Sons |
Total Pages | : 512 |
Release | : 2017-08-14 |
Genre | : Mathematics |
ISBN | : 1119443636 |
With Wiley's Enhanced E-Text, you get all the benefits of a downloadable, reflowable eBook with added resources to make your study time more effective, including: Embedded & searchable equations, figures & tables Math XML Index with linked pages numbers for easy reference Redrawn full color figures to allow for easier identification Elementary Differential Equations, 11th Edition is written from the viewpoint of the applied mathematician, whose interest in differential equations may sometimes be quite theoretical, sometimes intensely practical, and often somewhere in between. The authors have sought to combine a sound and accurate (but not abstract) exposition of the elementary theory of differential equations with considerable material on methods of solution, analysis, and approximation that have proved useful in a wide variety of applications. While the general structure of the book remains unchanged, some notable changes have been made to improve the clarity and readability of basic material about differential equations and their applications. In addition to expanded explanations, the 11th edition includes new problems, updated figures and examples to help motivate students. The program is primarily intended for undergraduate students of mathematics, science, or engineering, who typically take a course on differential equations during their first or second year of study. The main prerequisite for engaging with the program is a working knowledge of calculus, gained from a normal two ] or three ] semester course sequence or its equivalent. Some familiarity with matrices will also be helpful in the chapters on systems of differential equations.
Author | : Thomas Hillen |
Publisher | : John Wiley & Sons |
Total Pages | : 610 |
Release | : 2014-08-21 |
Genre | : Mathematics |
ISBN | : 1118438434 |
Uniquely provides fully solved problems for linear partial differential equations and boundary value problems Partial Differential Equations: Theory and Completely Solved Problems utilizes real-world physical models alongside essential theoretical concepts. With extensive examples, the book guides readers through the use of Partial Differential Equations (PDEs) for successfully solving and modeling phenomena in engineering, biology, and the applied sciences. The book focuses exclusively on linear PDEs and how they can be solved using the separation of variables technique. The authors begin by describing functions and their partial derivatives while also defining the concepts of elliptic, parabolic, and hyperbolic PDEs. Following an introduction to basic theory, subsequent chapters explore key topics including: • Classification of second-order linear PDEs • Derivation of heat, wave, and Laplace’s equations • Fourier series • Separation of variables • Sturm-Liouville theory • Fourier transforms Each chapter concludes with summaries that outline key concepts. Readers are provided the opportunity to test their comprehension of the presented material through numerous problems, ranked by their level of complexity, and a related website features supplemental data and resources. Extensively class-tested to ensure an accessible presentation, Partial Differential Equations is an excellent book for engineering, mathematics, and applied science courses on the topic at the upper-undergraduate and graduate levels.
Author | : Thomas Alazard |
Publisher | : Springer Nature |
Total Pages | : 357 |
Release | : 2020-10-19 |
Genre | : Mathematics |
ISBN | : 3030502848 |
This textbook offers a unique learning-by-doing introduction to the modern theory of partial differential equations. Through 65 fully solved problems, the book offers readers a fast but in-depth introduction to the field, covering advanced topics in microlocal analysis, including pseudo- and para-differential calculus, and the key classical equations, such as the Laplace, Schrödinger or Navier-Stokes equations. Essentially self-contained, the book begins with problems on the necessary tools from functional analysis, distributions, and the theory of functional spaces, and in each chapter the problems are preceded by a summary of the relevant results of the theory. Informed by the authors' extensive research experience and years of teaching, this book is for graduate students and researchers who wish to gain real working knowledge of the subject.
Author | : Maciej Borodzik |
Publisher | : Springer |
Total Pages | : 260 |
Release | : 2019-05-07 |
Genre | : Mathematics |
ISBN | : 3030147347 |
This book covers a diverse range of topics in Mathematical Physics, linear and nonlinear PDEs. Though the text reflects the classical theory, the main emphasis is on introducing readers to the latest developments based on the notions of weak solutions and Sobolev spaces. In numerous problems, the student is asked to prove a given statement, e.g. to show the existence of a solution to a certain PDE. Usually there is no closed-formula answer available, which is why there is no answer section, although helpful hints are often provided. This textbook offers a valuable asset for students and educators alike. As it adopts a perspective on PDEs that is neither too theoretical nor too practical, it represents the perfect companion to a broad spectrum of courses.
Author | : Piotr Biler |
Publisher | : CRC Press |
Total Pages | : 261 |
Release | : 2020-08-11 |
Genre | : Mathematics |
ISBN | : 1000104753 |
This book presents original problems from graduate courses in pure and applied mathematics and even small research topics, significant theorems and information on recent results. It is helpful for specialists working in differential equations.